Differential inertia terms in a local main axis coordinate frame


At first all inertia terms are derived in a local coordinate frame $ X_i$, with axes $ X_2$, $ X_3$ corresponding to the principal axes of the cross-section, i.e. $ I_{23}=0$.

Figure 80: Cylindrical beam with arbitrary cross-section (principal cross-section axes $ X_2$, $ X_3$)
[width=]u1_mass_derivation (-190,112)red $ \textrm{d}J^S_{1} \ddot{\varphi}_1$ (-60,140)red $ \textrm{d}J^S_{22} \ddot{\varphi}_2$ (-130,140)red $ \textrm{d}J^S_{33} \ddot{\varphi}_3$ (-139, 90)red $ \textrm{d}m \ddot{u}_1$ (-80,110)red $ \textrm{d}m \ddot{u}_2$ (-114,120)red $ \textrm{d}m \ddot{u}_3$ (-285,0)$ \hat X_1$ (-340,47)$ \hat X_2$ (-345,12)$ \hat X_3$ (-110,75)$ S$ (-240,25) $ \hat{\boldsymbol{X}}_S$ (-17,48)red$ X_1$ (-162,50)red$ X_2$ (-70,50)red$ X_3$
With the moments of inertia
$\displaystyle \textrm{d}I_{33}$ $\displaystyle =$ $\displaystyle X_2^2 \textrm{d}A$  
$\displaystyle \textrm{d}I_{22}$ $\displaystyle =$ $\displaystyle X_3^2 \textrm{d}A$  
$\displaystyle \textrm{d}I_p$ $\displaystyle =$ $\displaystyle (X_2^2 + X_3^2) \textrm{d}A$ (28)

the inertia forces of a differential cross-section $ \textrm{d}M = \rho A \textrm{d}X_1$ can be derived by integration of the above quantities over $ A$:


$\displaystyle \textrm{d}F_1$ $\displaystyle =$ $\displaystyle -\int_A \ddot{U}_1 \textrm{d}m = -\rho A \ddot{U}_1 \textrm{d}X$  
$\displaystyle \textrm{d}F_2$ $\displaystyle =$ $\displaystyle -\int_A \ddot{U}_2 \textrm{d}m = -\rho A \ddot{U}_2 \textrm{d}X$  
$\displaystyle \textrm{d}F_3$ $\displaystyle =$ $\displaystyle -\int_A \ddot{U}_3 \textrm{d}m = -\rho A \ddot{U}_3 \textrm{d}X$  
$\displaystyle \textrm{d}M_1$ $\displaystyle =$ $\displaystyle -\int_A \ddot{\psi}_1 \rho (X_2^2 + X_3^2) \textrm{d}A \textrm{d}X_1 = -\rho I_{p} \ddot{\psi}_1 \textrm{d}X_1$  
$\displaystyle \textrm{d}M_2$ $\displaystyle =$ $\displaystyle -\int_A \ddot{\psi}_2 \rho X_3^2 \textrm{d}A \textrm{d}X_1 = -\rho I_{22} \ddot{\psi}_2 \textrm{d}X_1$  
$\displaystyle \textrm{d}M_3$ $\displaystyle =$ $\displaystyle -\int_A \ddot{\psi}_3 \rho X_2^2 \textrm{d}A \textrm{d}X_1 = -\rho I_{33} \ddot{\psi}_3 \textrm{d}X_1$ (29)