A Galerkin discretization of the (virtual) displacements and rotations
![$\displaystyle \boldsymbol{U} \approx \boldsymbol{U}^h = \left[ \begin{array}{c}...
...\ \delta \psi_3(\xi) \end{array} \right] = \boldsymbol{N} \delta \boldsymbol{d}$](img394.png) |
(30) |
leads along with the nodal (virtual) displacements and rotations
![$\displaystyle \boldsymbol{d} = \left[ \begin{array}{c} (U_1)_1 \\ (U_2)_1 \\ : ...
...delta (U_1)_1 \\ \delta (U_2)_1 \\ : \\ \delta (\psi_{3})_2 \end{array} \right]$](img395.png) |
(31) |
and the with isoparametric shape functions
![$\displaystyle \boldsymbol{N} = \left[ \begin{array}{cccccccccccc} \varphi_1 & 0...
... & 0 & 0 & 0 & 0 & \varphi_1& 0 & 0 & 0 & 0 & 0 & \varphi_2 \end{array} \right]$](img397.png) |
(32) |
where
 |
(33) |
to the following weak formulation of the inertia terms:
![$\displaystyle \int_x \delta \boldsymbol{U}^T \cdot \left[\begin{array}{c} \text...
...t] \textrm{d}X_1 = \delta \boldsymbol{d}^T \boldsymbol{M} \ddot{\boldsymbol{d}}$](img399.png) |
(34) |
Requiring a constant cross-section along the entire element thus yields constant material
parameters, which can be pulled out of the above integration of
over
.
Thus the integration of the product of the shape functions can be performed analytically
(under consideration of the transformation of the length differential
to
according to
 |
(35) |
 |
(36) |