Mass matrix in (local) main axis coordinate frame


Consequently, the mass matrix becomes in the principal axis coordinates

$\displaystyle \boldsymbol{M} = \left[ \begin{array}{cc} \boldsymbol{M}_D & \boldsymbol{M}_{ND} \\ \boldsymbol{M}^T_{ND} & \boldsymbol{M}_D \end{array} \right]$ (37)

with

$\displaystyle \boldsymbol{M}_D = \frac{1}{3}(X_2 - X_1) \left[ \begin{array}{cc...
... 0 & 0 & \rho I_{22} & 0 \\ 0 & 0 & 0 & 0 & 0 & \rho I_{33} \end{array} \right]$ (38)

and

$\displaystyle \boldsymbol{M}_{ND} = \frac{1}{6}(X_2 - X_1) \left[ \begin{array}...
... 0 & 0 & \rho I_{22} & 0 \\ 0 & 0 & 0 & 0 & 0 & \rho I_{33} \end{array} \right]$ (39)