Mass matrix in global coordinate frame


Transformation of a vector $ \boldsymbol{a}$ from local coordinate frame $ \boldsymbol{e}_i$ into global coordinate frame $ \hat{\boldsymbol{e}}_i$ yields

$\displaystyle \hat{a}_i \hat{\boldsymbol{e}}_i$ $\displaystyle =$ $\displaystyle a_j \boldsymbol{e}_j \quad \vert \cdot \hat{\boldsymbol{e}}_k$ (40)
$\displaystyle \hat{a}_i \delta_{ik}$ $\displaystyle =$ $\displaystyle a_j \boldsymbol{e}_j \cdot \hat{\boldsymbol{e}}_k$ (41)
$\displaystyle \hat{a}_k$ $\displaystyle =$ $\displaystyle T_{jk} a_j = (T^T)_{kj} a_j$ (42)

or

$\displaystyle \boldsymbol{a} = \boldsymbol{T} \boldsymbol{\hat{a}},$ (43)

with the transformation matrix

$\displaystyle \boldsymbol{T} = \left[ \begin{array}{ccc} - & \boldsymbol{e}_1 & - \\ - & \boldsymbol{e}_2 & - \\ - & \boldsymbol{e}_3 & - \end{array} \right]$ (44)

Therefore, the variation of the kinetic energy becomes

$\displaystyle \delta \boldsymbol{d}^T \boldsymbol{M} \boldsymbol{d} = \delta \b...
...{\hat{d}}^T \boldsymbol{T}^T \boldsymbol{M} \boldsymbol{T} \boldsymbol{\hat{d}}$ (45)

and thus the final mass matrix in global coordinate frame $ \hat{\boldsymbol{e}}_i$ yields

$\displaystyle \hat{\boldsymbol{M}} = \boldsymbol{T}^T \boldsymbol{M} \boldsymbol{T}$ (46)