
CalculiX USER’S MANUAL

- CalculiX GraphiX, Version 2.22 -

Klaus Wittig

July 25, 2024

Figure 1: A complex model made from scratch using second order brick elements

1

Contents

1 Introduction 8

2 Concept 8

3 File Formats 10

4 Getting Started 11

5 Program Parameters 15

6 Input Devices 16
6.1 Mouse . 16
6.2 Keyboard . 17

7 Menu 18
7.1 Datasets . 18

7.1.1 Entity . 18
7.2 Viewing . 19

7.2.1 Show Elements With Light 19
7.2.2 Show Bad Elements . 20
7.2.3 Fill . 20
7.2.4 Lines . 20
7.2.5 Dots . 20
7.2.6 Flip shell elements . 20
7.2.7 Toggle Culling Back/Front 20
7.2.8 Toggle Illuminate Backface 20
7.2.9 Toggle Model Edges . 20
7.2.10 Toggle Element Edges . 21
7.2.11 Toggle Surfaces/Volumes 21
7.2.12 Toggle Move-Z/Zoom . 21
7.2.13 Toggle Background Color 21
7.2.14 Toggle Vector-Plot . 21
7.2.15 Toggle Add-Displacement 22
7.2.16 Toggle Shaded Result . 22
7.2.17 Toggle Transparency . 22
7.2.18 Toggle Ruler . 22
7.2.19 Colormap . 22

7.3 Animate . 22
7.3.1 Start . 22
7.3.2 Tune-Value . 23
7.3.3 Steps per Period . 23
7.3.4 Time per Period . 23
7.3.5 Toggle Real Displacements 23
7.3.6 Toggle Static Model Edges 23
7.3.7 Toggle Static Element Edges 23

2

7.3.8 Toggle Dataset Sequence 23
7.4 Frame . 23
7.5 Zoom . 24
7.6 Center . 24
7.7 Enquire . 24
7.8 Cut . 24
7.9 Graph . 24
7.10 User . 25
7.11 Orientation . 25

7.11.1 +x View . 25
7.11.2 -x View . 25
7.11.3 +y View . 25
7.11.4 -y View . 25
7.11.5 +z View . 25
7.11.6 -z View . 25

7.12 Hardcopy . 25
7.12.1 Tga-Hardcopy . 25
7.12.2 Ps-Hardcopy . 25
7.12.3 Gif-Hardcopy . 26
7.12.4 Png-Hardcopy . 26
7.12.5 Start Recording Gif-Movie 26

7.13 Help . 26
7.14 Toggle CommandLine . 26
7.15 Quit . 26

8 Customization 27

9 Commands 27
9.1 anim . 28
9.2 area . 28
9.3 asgn . 29
9.4 aver . 32
9.5 bia . 32
9.6 body . 33
9.7 break . 34
9.8 call . 34
9.9 capt . 34
9.10 cmap . 34
9.11 cntr . 35
9.12 col . 35
9.13 comp . 35
9.14 cont . 36
9.15 copy . 36
9.16 corrad . 38
9.17 csysa . 38
9.18 cut . 38

3

9.19 del . 39
9.20 dist . 40
9.21 div . 41
9.22 ds . 42
9.23 elem . 45
9.24 else . 46
9.25 else if . 46
9.26 elty . 46
9.27 endif . 48
9.28 endwhile . 48
9.29 enq . 48
9.30 eprop . 50
9.31 eqal . 50
9.32 exit . 51
9.33 fil . 51
9.34 flip . 51
9.35 flpc . 51
9.36 font . 51
9.37 frame . 52
9.38 gbod . 52
9.39 gonly . 52
9.40 graph . 52
9.41 grpa . 54
9.42 grps . 55
9.43 gsur . 55
9.44 gtol . 55
9.45 hcpy . 56
9.46 help . 56
9.47 if . 57
9.48 int . 57
9.49 init . 57
9.50 lcmb . 58
9.51 length . 58
9.52 line . 58
9.53 lnor . 59
9.54 mata . 59
9.55 map . 60
9.56 mats . 61
9.57 max . 61
9.58 maxc . 61
9.59 maxr . 61
9.60 menu . 61
9.61 merg . 62
9.62 mesh . 62
9.63 mids . 63
9.64 min . 63

4

9.65 minc . 64
9.66 minr . 64
9.67 minus . 64
9.68 mm . 64
9.69 move . 65
9.70 movi . 66
9.71 msg . 67
9.72 mshp . 67
9.73 neigh . 68
9.74 node . 71
9.75 norm . 71
9.76 nurl . 71
9.77 nurs . 72
9.78 ori . 73
9.79 plot . 73
9.80 plus . 75
9.81 pnt . 76
9.82 prnt . 76
9.83 proj . 79
9.84 qadd . 80
9.85 qali . 81
9.86 qbia . 81
9.87 qbod . 81
9.88 qcnt . 82
9.89 qcut . 82
9.90 qdel . 82
9.91 qdis . 83
9.92 qdiv . 84
9.93 qenq . 85
9.94 qfil . 85
9.95 qflp . 86
9.96 qint . 87
9.97 qlin . 87
9.98 qmov . 88
9.99 qmsh . 89
9.100qnor . 90
9.101qpnt . 90
9.102qnod . 91
9.103qrem . 91
9.104qseq . 91
9.105qshp . 92
9.106qspl . 92
9.107qsur . 93
9.108qtxt . 94
9.109quit . 94
9.110read . 94

5

9.111rep . 99
9.112rnam . 99
9.113rot . 99
9.114save . 100
9.115scal . 100
9.116send . 100
9.117seqa . 115
9.118seqc . 116
9.119seql . 116
9.120seta . 116
9.121setc . 117
9.122sete . 118
9.123seti . 119
9.124setl . 119
9.125seto . 119
9.126setr . 120
9.127shpe . 120
9.128split . 121
9.129stack . 123
9.130steps . 123
9.131stop . 123
9.132subm . 123
9.133surf . 123
9.134swep . 124
9.135sys . 126
9.136test . 126
9.137thrs . 127
9.138tra . 127
9.139trfm . 128
9.140txt . 129
9.141typs . 130
9.142ucut . 130
9.143ulin . 131
9.144val . 131
9.145valu . 131
9.146view . 134
9.147volu . 135
9.148while . 135
9.149wpos . 136
9.150wsize . 136
9.151zap . 136
9.152zoom . 136

10 Element Types 137

6

11 Result Format 143
11.1 Model Header Record . 144
11.2 User Header Record . 144
11.3 Nodal Point Coordinate Block . 144
11.4 Element Definition Block . 145
11.5 Parameter Header Record . 146
11.6 Nodal Results Block . 147

12 Pre-defined Calculations 149
12.1 Von Mises Equivalent Stress . 150
12.2 Signed Von Mises Equivalent Stress 150
12.3 Von Mises Equivalent Strain . 150
12.4 Signed Von Mises Equivalent Strain 150
12.5 Principal Stresses . 150
12.6 Principal Strains . 150
12.7 maxShear Stresses . 151
12.8 Contact Stresses . 151
12.9 Contact Strain . 151
12.10Cylindrical Stresses . 151
12.11Weighted Error . 151

13 Meshing rules 151

14 User-Functions 153

A Known Problems 153
A.1 Program does not show the geometry after startup 153
A.2 Program is not responding . 154
A.3 Program generates a segmentation fault 154

B Tips and Hints 154
B.1 How to change the format of the movie file 154
B.2 How to get the sets from a geo- or ccx-inp file for post-processing 155
B.3 How to define a set of entities . 155
B.4 How to enquire node numbers and values at certain locations . . 156
B.5 How to select only nodes on the surface 156
B.6 How to write values to a file . 156
B.7 How to generate a user dataset 157
B.8 How to generate a time-history plot 157
B.9 How the mesh is related to the geometry 158
B.10 How to change the order of elements 159
B.11 How to connect independent meshes 159
B.12 How to define loads and constraints 159
B.13 How to map loads . 160
B.14 How to run cgx in batch mode 162
B.15 How to process results . 163

7

B.16 How to deal with CAD-geometry 163
B.17 How to check an input file for ccx 170
B.18 Remarks Concerning Ansys . 171
B.19 Remarks Concerning Code Aster 171
B.20 Remarks Concerning dolfyn . 172
B.21 Remarks Concerning Duns and Isaac 172
B.22 Remarks Concerning ls-dyna . 173
B.23 Remarks Concerning Nastran . 174
B.24 Remarks Concerning NETGEN 174
B.25 Remarks Concerning OpenFOAM 175
B.26 Remarks Concerning Samcef . 175

C Simple Examples 177
C.1 Disc . 177
C.2 Cylinder . 178
C.3 Sphere . 180
C.4 Sphere (Volume) . 181
C.5 Airfoil for cfd codes . 182
C.6 If and while demo . 187
C.7 Data storage in a user dataset . 189
C.8 User File Parser . 190

1 Introduction

This document is the description of CalculiX GraphiX (cgx). This program is
designed to generate and display finite elements (FE) and results coming from
CalculiX CrunchiX (ccx). If you have any problems using cgx, this document
should solve them. If not, you might send an email to the author [3]. The Con-
cept and File Format sections give some background on functionality and mesher
capabilities. The Getting Started section describes how to run the verification
examples you should have obtained along with the code of the program. You
might use this section to check whether you installed CalculiX correctly. Then,
a detailed overview is given of the menu and all the available keywords in al-
phabetical order in the Menu and Commands sections respectively. Finally, the
User’s Manual ends with the appendix and some references used while writing
the code.

2 Concept

This program uses the openGL library for visualization and the glut library [2]
for window management and event handling. This results in very high speed
if a hardware-accelerated openGL-library is available and still high speed for
software-rendering (MesaGL,[1]).

The cgx has pre- and post-processor capabilities. It is able to generate and
display beam, shell and brick elements in its linear and quadratic form (fig. 1),

8

tets can be generated from within cgx if either TETGEN [5] or the program
ng vol (part of NETGEN [4]) is accessible (see also ”How to deal with CAD-geometry”).
TETGEN comes with cgx.

The built-in mesher creates a structured mesh based on a description of
the geometry. For example, it uses lines for beam elements, surfaces for shell
elements and volumes (bodies) for brick elements. The program distinguishes
between the mesh and the underlying geometry. Elements are made from faces
and faces are made from nodes. If you move a node, the corresponding face(s)
and element(s) will follow. The geometry behaves according to the mesh: Lines
are made from points, surfaces are made from lines and bodies are made of
surfaces. As a result, if you modify the position of a point, all related geometry
will follow. In other words, if the location of geometric entities is changed, it is
necessary to move the points on which the entities rely. It should be noted that
faces exist only on free surfaces of the model.

In addition, entities can be grouped together to make sets. Sets are useful
to handle parts of a model. For example, sets can be used to manipulate or
display a few entities at a time (see also ”How to define a set of entities”).

A simple but powerful entity which can store values (character strings) is
also available. This values can be derived from previous commands or calculated
results by using an internal stack. Simple calculations can be performed. The
values can be used to substitute parameters of subsequent commands. The user
might measure a distance or calculate a distance and use this value to move a
part of the mesh. Together with a ’while’ loop, an ’if’ case distinguishing com-
mand and the possibility to use system calls via the ’sys’ command, elaborated
batch files can be written.

After a mesh is created in cgx, it needs written to a file for use with the solver.
Likewise, several boundary conditions and loads can be written to files (see
”How to connect independent meshes”, ”How to define loads and constraints” and
”send”). These files need to be added into the control file for later use in ccx.
Additional commands, material description and so on must be added with the
help of an external editor. Existing fields like a pressure distribution or tempera-
tures may be mapped from one mesh to another. Please see ”How to map loads”
how to do that.

After the analysis is completed, the results can be visualized by calling the
cgx program again in an independent session. The program is primary controlled
by the keyboard with individual commands for each function. Only a subset
of commands which are most important for post-processing is also available
through a pop-up menu. Shaded animations of static and dynamic results, the
common color plots and time history plots can be created. The outer faces can
be switched off to make inner structures like a cavity visible or certain faces
may be displayed in a transparent manner. Also, a cut through the model can
be done which creates a section and it is possible to zoom through the model.

Skilled users might include their own functions. For example someone may
need his own functions to manipulate the result-data or he may need an interface
to read or write his own results format (see ”call”).

Both the pre- and post- processing can be automated in batch-mode (see

9

”How to run cgx in batch mode”).
The program searches the home directoy for a file named “.cgx” (see “Customization”).

The commands written there will be executed during startup. The user might
store there ”menu” commands which link user written command files to the
menu or other personal settings like “view cl” to switch the command line from
the konsole to the graphic’s window. Also the helpfiles, the browser and the
psviewer (for graphs) can be redefined (see “asgn”).

3 File Formats

It is hoped by the author that common CAD formats will be supported by
stand-alone interfaces which translate into fbd-commands. So far vda, step and
iges to fbd interfaces are available on the CalculiX home pages. Tet-meshes
can be generated based on the resulting fbd-files. The following file-formats are
available to write(w) and/or read(r) geometric entities:

• fbd-format(r/w), this format consists of a collection of commands ex-
plained in the section ”Commands” and it is used to store geometrical
information like points, lines, surfaces and bodies. All geometry gener-
ated by the user is stored in this format. But it can also be used to define
a batch job which uses the available commands.

• step-format(r), reverse engineered based on some cad files. Only points
and certain types of lines are supported currently. Be aware of the more
powefull cad2fbd interface program on the CalculiX home page.

• stl-format in ascii (r/w) and binary, this format describes a shape using
only triangles.

The following file-formats are available to write a mesh and certain boundary-
conditions:

• Abaqus, which is used by the CalculiX solver ccx.

• Ansys, several boundary conditions available.

• Code Aster, mesh and sets of nodes and elements are available.

• dolfyn, a free cfd-code [6].

• duns, a free cfd-code [7].

• isaac, a free cfd-code [8].

• ls-dyna, mesh, node- and element sets and surfaces.

• Nastran, several boundary conditions available.

• OpenFOAM, a free cfd-code [9], only 8-noded brick-elements are sup-
ported.

10

• Samcef, mesh and sets of nodes and elements are available.

• tochnog, a free fem-code [10], only 8-noded brick-elements are supported.

The following solver-input-file-formats can be read to check the mesh, sets and
certain boundary-conditions:

• Abaqus, this is also used by the CalculiX solver ccx.

• Netgen, read Netgen native format (.vol)

The following file-formats are available to read solver results:

• frd-format, files of this format are used to read results of previous calcula-
tions like displacements and stresses. This format is described in section
”Result Format.” It is used by the CalculiX solver ccx.

• duns, a free cfd-code [7],

• isaac, a free cfd-code [8],

• OpenFOAM, a free cfd-code [9].

• Nastran, the f06-file can be read (sf. only CHEXA, displacements and
stresses). Unfortunatelly this format differs from version to version and
has to be adapted occasionally.

• vtk, so far only the mesh without results (nodes, qu4 and tet4 elements).

For a more detailed description on how to use cgx to read this formats see the
”read” command, ”Program Parameters” and the program specific ”Tips and Hints”
sections. See the ”send” command for how to write them from cgx.

4 Getting Started

For installation help, see .../Calculix/cgx X.X/INSTALL. Be aware of the pos-
sibility to redefine the helpfiles, browser and psviewer which is explained there.

After the program is installed on your machine, you should check the func-
tionality by running the examples included in the distribution. The examples
are located in .../Calculix/cgx X.X/examples/. Begin with a result file called
result.frd. Just type

”cgx result.frd”

and some information is echoed in the konsole and a new window called main
window appears on the screen. The name conventions used for the different areas
in the main-window are explained in figure 2. Now you should move the mouse
pointer into the menu-area and press the left mouse-button. Keep it pressed
and continue over the menu item “Dataset” to “Disp”. There you release the

11

button. Then press the left button again and continue over “Dataset” and “En-
tity” to “D1”. For background informations look into the subsection ”Datasets”
and ”Entity” which explains how to display results. After seeing the values you
might play around a bit with the ”Menu”. Before going further, you should read
the section ”Input Devices”. See also the commands ”steps”, ”maxr”, ”minr”,
”max”, ”min” (or the combination of max and min ”mm”) and ”scal” which
might be used to modify the colour representation of the displayed values. For
example type “min 0” to set the lower value of the colour bar to zero. Now you
should study the following interactive commands: Use ”qenq” to enquire values
at nodes. Use ”qtxt” to generate node attached texts showing their number
and value. Use ”capt” to change the displayed filename to a user defined text
and ”ulin” to add a second line under the filename. Use ”qcut” to generate
a section through the model. And use ”graph” to generate a 2D time history
plot (for results with several time-steps) or a 2D plot of values along a sequence
of nodes (see ”qseq”). In case you want to display just a set of nodes, faces
or elements with their results use the ”plot”, ”plus” and ”minus”. commands
(see also ”How to get the sets from a geo- or ccx-inp file for post-processing”).
Watch out when you type a command; the cgx window MUST stay active and
not the konsole from which the program was started. It is better to stay with
the mouse pointer in the cgx window. Next, ”Quit” the program and type

”cgx -b geometry.fbd”

in the konsole. The program starts again but now you see only a wire-frame of
the geometry. Move the mouse-pointer into the new window and type ”mesh
all”. The mouse-pointer MUST stay in this window during typing and NOT in
the konsole from which the program was started. After you see ”ready” in the
parent konsole, the mesh is created. To actually see it, type ”plus ea all”. Now
you see the mesh in green color. To see the mesh as a wire-frame, choose in the
main menu”Viewing” and continue to the entry ”Toggle Element Edges” and
then again in ”Viewing” choose ”Dots”. To see the mesh illuminated chose in the
main menu ”Viewing” and continue to the entry ”Show Elements With Light”.
To see it filled, choose in the main menu ”Viewing” and continue to the entity
”Fill”. Most of the time it is sufficient to see the surface elements only. For
this purpose, choose in the main menu ”Viewing” and continue to the entry
”Toggle Surfaces/Volumes”. If you start cgx in the post processor mode, as you
did in the first example (cgx result.frd), the surface mode is automatically set.
To see the interior of the structure, choose in the main menu ”Viewing” and
continue to the entity ”Toggle Culling Back/Front”. To save the mesh in the
format used by the solver, type ”send all abq”. To store the mesh in the result
format type ”send all frd”.

To create a new model start the cgx by typing

”cgx -b file”

where ”file” will be the name of the new model if you later exit the program

12

with the command ”exit”. The way to create a model from scratch is roughly
as follows, create

• points with ”qpnt” or ”pnt”,

• lines with ”qlin”,

• surfaces with”qsur”,

• Bodies with ”qbod”.

If possible, create higher geometry by sweeping or copying geometry with ”swep”
or ”copy”. You might move or scale your model with the command ”move”.
The commands require sets to work with. Sets reference entities like bodies or
nodes. They are useful because you can deal with a bunch of entities at once.
See the section ”How to define a set of entities” about how to create them. You
may write a file with basic commands like ”pnt” to create the basis for your
construction and read it with the ”read” command. Most commands can be
used in batch mode. This allows the user to write a command file for repeated
actions.

If you want to start with CAD geometry then please read ”How to deal with CAD-geometry”.
The interactive commands start with the letter ’q’. Please make yourself

familiar with all of them before you start to model complex geometry.
After the geometry is created, the divisions of the lines can be changed to

control the density of the elements. Display the lines and their divisions with

• ”plot ld all”.

To change the element division, use

• ”qdiv”.

The default division is ”4”. With a division of”4,” a line will have 6 nodes and
will therefore be the edge of two element of the quadratic type. Next, the type
of the elements must be defined. This can be done for each of the different sets.
A new assignment will replace a previous one. Delete all previous assignments
with

• ”elty all”

and assign new types with

• ”elty all he20”.

If a mesh is already defined type

• ”del mesh”

and mesh again with

• ”mesh all”.

13

Then choose the menu entity ”Viewing - Show Elements With Light” to see the
illuminated mesh. Lastly, export the mesh in the calculix solver format with

• ”send all abq”.

With the ”send” command, it is also possible to write boundary conditions,
loads and equations to files. The equations are useful to ”glue” parts together
(see ”How to connect independent meshes”.

It is advisable to save your work from time to time without exiting the
program. This is done with the command

• ”save”.

You leave the program either with

• ”exit”

or with

• ”quit”.

Exit will write all geometry to an fbd-file and if a file of this name exists already
then the extension of this file will be renamed from fbd to fbb. ”quit” closes
the program without saving.

A solver input file can be written with the help of an editor (emacs, nedit
etc.). If you write a ccx command file, then include the mesh, the boundary
conditions etc. with the ccx command ”*INCLUDE”. After you finished your
input-file for the solver (ccx) you might read it by calling the program again with

”cgx -c solverfile.inp”

for a final check. All predefined sets are available together with automati-
cally generated sets which store boundaries, equations and more. These sets
start with the ”+”-sign. For example the set +bou stores all constrained nodes
where the set +bou1, +bou2, +bou3 store the constraints for the individual di-
rections. Further the set +dep and +ind store the dependent and independent
nodes involved in equations etc. See which sets are defined with the command

• ”prnt se”.

Each line starts with the set-index, then the set-name followed by the number of
all referenced entities. The sets can be specified by index or name. For example
if the index of set ”blade” is ”5” the following commands are equivalent:

• ”plot p 5”

• ”plot p blade”

The use of wildcards is possible to search for a certain expression:

• ”prnt se +*”

14

Now all sets starting with a “+” in their names will be listed.
Predefined loads are stored as ”Datasets” to be visualized. Sets with the

name of the load-type (CLOAD, DLOAD) store the related nodes, faces or
elements. Use the command

• ”plot”

or

• ”plus”

to visualize entities of sets.
Then run the input file with ccx. The result file (.frd) can be visualized with

”cgx result.frd solverfile.inp”

were the solver input file ”filename.inp” is optional. With this file, the sets,
boundary conditions and loads used in the calculation are available together
with the results.

If you have problems doing the above or if you want to learn more and in more
detail about the cgx continue with the tutorial [11] and look in the appendix,
section Tips and Hints and Known Problems.

Eventually adapt the “.cgx” file in your home directory to your preferences.
Especially configure the help system and the psviewer for the “graph” command
if necessary (see “Customization”).

5 Program Parameters

usage:

cgx [-a|-b|-bg|-c|-duns2d|-duns3d|-isaac2d|-isaac3d|-foam|-ng|

-step|-stl] filename [ccxfile]

-a automatic-build-mode, geometry file derived from a

cad file is expected

-b build-mode, geometry file in fbd-format is expected

-bg background, suppress creation of graphic output

otherwhise as -b, geometry (command) file must be

provided

-c read an solver input file (ccx, Abaqus)

-duns2d read duns result files (2D)

-duns3d read duns result files (3D)

-duns2dl read duns result files (2D, long format)

-duns3dl read duns result files (3D, long format)

-isaac2d read isaac result files (2D)

-isaac3d read isaac result files (3D)

-foam read the OpenFOAM result directory structure

15

-f06 read Nastran f06 file.

-ng read Netgen native format (with surface domains)

-step read an ascii-step file (points and lines only)

-stepsplit read step and write its parts to the filesystem

in separate directories

-stl read an stl file (triangles)

-vtk read an vtk file (tet4, qu4 w/o results)

[-v] (default) read a result file in frd-format and

optional a solver input file (ccx) in addition

which provides the sets and loads used in the

calculation.

special purpose options:

-mksets make node-sets from *DLOAD-values

(setname:’’_<value>’’)

-read forces the program to read the complete result-

file at startup

If no option is provided then a result-file (frd) is assumed, see ”Result Format”.
A file containing commands or geometric informations is assumed if the

option -b is specified. Such a file will be created if you use ”exit” or ”save” after
you have interactively created geometry. Option -a awaits the same format
as option -b but merging, defining of line-divisions and the calculation of the
interior of the surfaces is done automatically and the illuminated structure is
presented after startup. This should be used if the command file was generated
by an interface program which convertes cad-data to cgx-format (for example
vda2fbd). With option -a and -b the program will start also if no file is specified.

An input file for the solver can be read with option -c. Certain key-words are
known and the affected nodes or elements are stored in sets. For example the
default set(s) +bou(dof) store nodes which are restricted in the corresponding
degree of freedom and the set(s) +dep(dof) and +ind(dof) store dependent and
independent nodes used in equations.

A special case is OpenFOAM. The results are organized in a directory struc-
ture consisting of a case containing time-directories in which the result-files are
stored. The user must call cgx using the case-directory (cgx -foam case). The
program will then search the time-directories. The time directories must con-
tain a time-file to be recognized. Or in other words each directory in this level
containing a time-file is regarded as a result directory.

6 Input Devices

6.1 Mouse

The mouse is used to manipulate the view-point and scaling of the object inside
the drawing area (figure 2). Rotation of the object is controlled by the left
mouse button, zoom in and out by the middle mouse button and translation of

16

the object is controlled by the right mouse button. Inside the menu area, the
mouse triggers the main menu with the left button.

In addition the mouse controls the animation of nodal values. The animation
will stop if the mouse pointer is not in the drawing area but will start again
if the pointer enters the drawing area. This can be prevented by pressing the
middle mouse button while the mouse pointer is in the menu area. Pressing the
right button will release the next frame. A frozen animation can be released
by pressing the middle button. The previous frame can be reloaded by pressing
the middle mouse button twice and the right button once (while the mouse is
in the menu area).

Figure 2: structure of the main-window

6.2 Keyboard

The Keyboard is used for command line input and specifying the type of entities
when selecting them with the mouse pointer. The command line is preferable
in situations where pure mouse operation is not convenient (i.e. to define a
certain value) or for batch controlled operations. Therefore most commands are
only available over the command line. The stream coming from the keyboard
is echoed in the parent-konsole but during typing the mouse pointer must stay

17

inside the main window. Otherwise the commands will not be recognized by
the program. The user might use the menu fuction “Toggle CommandLine” or
the command “view cl” to switch the command line from the konsole to the
graphic’s window.

The following special keys are used:

Special Keys:

ARROW_UP: previous command

ARROW_DOWN: next command

PAGE_UP: entities of previous set (if the last command was

plot or plus) or the previous Loadcase

PAGE_DOWN: entities of next set (if the last command was

plot or plus) or the next Loadcase

7 Menu

The main menu pops up when pressing the left mouse-button inside the menu-
area (figure 3). It should be noted that there are equivalent command-line
functions for most of the menu-functions. This can be used for batch-controlled
post-processing (see command ”view”. Next the entities inside the main menu
will be explained:

7.1 Datasets

Datasets are selected with the menu-item ”Dataset”. A dataset is a block of
nodal values. These could be displacements due to a linear analysis or for a spe-
cific time-step during a nonlinear analysis. It could also contain other values like
stresses, strains, temperatures or something else. To select a dataset, make sure
that the mouse-pointer is inside the menu area. Then, press the left mouse but-
ton and move the mouse-pointer over the menu entry ”Dataset”, then continue
to the right. A sub-menu pops up showing all available datasets. Each dataset
entry comprises the step number (NUMSTP: see ”Nodal Results Block”) fol-
lowed by the name (NAME), a dataset-value (VALUE, usually time or fre-
quency) and a dataset-description (TEXT). Move the mouse-pointer over a
dataset you are interested in and release the left mouse button. The dataset is
now selected. A results ”Entity” must be chosen to see the values in the drawing-
area. This Dataset might also contain automatically calculated values like the
v. Mises stress and the maximum principal stress (see Pre-defined Calculations
and Result Format). See also the command ”ds” to control the functionality
with the command-line.

7.1.1 Entity

To view data from the dataset, its also necessary to specify the entity (i.e. dx
for a displacement Dataset). It works in the same way as for selecting the
dataset but instead of releasing the left mouse button over a Dataset continue

18

Figure 3: structure of the main-menu

to the sub-menu ”Entity.” Continue from that item to the right and release the
mouse button when the pointer is over the desired entity. Now the data will be
displayed in the drawing-area.

7.2 Viewing

In the following sections, changing properties and styles of the displayed struc-
ture are explained. See the command ”view” to control the functions with the
command-line.

7.2.1 Show Elements With Light

This is the default view of the mesh if the program was started in viewing mode.
If used, any animation will be interrupted and no values are displayed.

19

7.2.2 Show Bad Elements

This option presents elements which have a negative Jacobian value at least at
one integration point. The solver ccx can not deal with those elements. So far,
only TET and HEX elements are checked. These elements are stored in the set
called -NJBY. See also the command ”eqal”.

7.2.3 Fill

This is the default mode and forces the element faces to be rendered.

7.2.4 Lines

The edges of the element faces are displayed. This is especially useful to see into
the structure to find hot spots in the displayed field. With ”Toggle Move-Z/Zoom”
and ”qcut”, a more detailed analysis can follow. For very dense meshes switch
to ”Dots”.

7.2.5 Dots

The corners of the element faces will be displayed. This is especially useful if
values inside the structure need checked.

7.2.6 Flip shell elements

This function inverts the front and back side of shell elements. Since it is slow the
user may work with ”Toggle Culling Back/Front” which has often the desired
effect without waiting time.

7.2.7 Toggle Culling Back/Front

This removes the faces of volume elements for all elements or for the surface of
the structure, depending on the state of ”Toggle Surfaces/Volumes”. With this
option, the user can visualize internal structures like cracks or a core of a hollow
structure.

7.2.8 Toggle Illuminate Backface

Initially only the front faces are illuminated and the back faces are dark. This
is helpful to determine the orientation of the elements. If you want to see all
faces illuminated regardless of the orientation, then use this option. If you want
to change the orientation of elements use the command ”qflp”.

7.2.9 Toggle Model Edges

Per default, all free element edges are shown. The user can remove/show them
with this option.

20

7.2.10 Toggle Element Edges

Per default, just the free element edges are shown. The user might add all edges
to the structure with that option.

7.2.11 Toggle Surfaces/Volumes

This switches the way each volume elements are displayed. Either all faces
of the elements or just the element faces on the surface of the structure are
displayed. Depending on the state of ”Toggle Culling Back/Front,” either the
faces pointing to the user or the faces pointing away are displayed. The default
is just to show the surface pointing to the user. In the lower left corner of the
drawing area,(see figure 2) a character is printed, indicating the program is in
the surface mode ”s” or in the volume mode ”v”.

7.2.12 Toggle Move-Z/Zoom

Instead of zooming in with the help of the middle mouse button, it is also
possible to move a clipping plane through the structure to get a view of the
inside. The clipping plane is parallel to the screen and will be moved in the
direction to and from the user by pressing the middle mouse button and moving
the pointer up and down while inside the drawing area. Initially the clipping
plane is located in the middle of the structure. The number below the axis
cross states the actual position of the cutting plane relative to the middle of the
structure in model dimensions. Consider using the ”plot” and ”plus” commands
to customize your view. Depending on hardware, this functionality could be
slow.

7.2.13 Toggle Background Color

With this option, it is possible to switch between a black and a white back-
ground.

7.2.14 Toggle Vector-Plot

It is possible to add small ”needles” to the plot which point with their heads
in the direction of the vectors. Only entities which are marked in the database
as vectors will be affected. See ”Nodal Results Block” for information on how
entities are marked as vectors. Internally calculated vector-results, like the worst
principal stress, are marked automatically. If one component or the value of a
vector is selected, then the option takes immediate effect.

This option can be used in combination with ”Animate Toggle Dataset Sequence”.

See also the keyboard command ”ds” how to select datasets and entities with
the keyboard. In this case, entities which are NOT marked in the dataset as
vectors can be displayed with vector-needles. This command line approach with

21

”ds” is the only way to display isaac or duns-cfd-results with vector-needles. See
also the command ”scal” how to manipulate the length of the vectors.

7.2.15 Toggle Add-Displacement

It is possible to display results on the deformed structure. For example, you
can display a stress field on the deformed structure. If you know a suitable
amplification factor for your displacements then use the ”scal” command to
issue this value but this can also be done later. Of course displacements for the
Loadcase must be available.

7.2.16 Toggle Shaded Result

It is possible to display results with illumination. For example, you can display
a stress field with a shaded appearance to have a better impression of the shape
of the structure.

7.2.17 Toggle Transparency

Transparent display in the surface mode is switched on or off.

7.2.18 Toggle Ruler

Triggers the display of a ruler bar.

7.2.19 Colormap

Changes the colormap of the color scale. The default is ’classic’. See also
”cmap”.

7.3 Animate

This option allows the animation of displacements. See also ”anim”, ”ds” and
”scal” to use this functionality with the command-line.

It is possible to create this sequence from just one Dataset, see ”Start”.
This is useful for displaying mode-shapes. See also ”Toggle Dataset Sequence”
to create a sequence from multiple Datasets to visualize dynamic responses.

7.3.1 Start

Creates a sequence of display-lists to visualize displacements (for example mode-
shapes). The program recognizes displacements just by the name of the dataset.
This name must start with the letters ”DISP”, otherwise the animation will not
start (see ”Nodal Results Block”).

22

7.3.2 Tune-Value

Controls the amplitude of the animation. If ”Toggle Real Displacements” was
chosen before, the tune-value is equivalent to the amplification of the animation.

7.3.3 Steps per Period

Determines how many display lists for one period of animation will be used. If
”Toggle Dataset Sequence” was chosen, then these number of display lists will
be interpreted as one period (see Time per Period).

7.3.4 Time per Period

Determines how many seconds per period.

7.3.5 Toggle Real Displacements

To see the correct displacement of each node. The animation can be controlled
with the help of the mouse.

7.3.6 Toggle Static Model Edges

The user can switch on additional undeformed model edges. This is useful for
hardcopies were this edges give a reference to the undeformed shape.

7.3.7 Toggle Static Element Edges

The user can switch on additional undeformed element edges. This is useful for
hardcopies were this edges give a reference to the undeformed shape.

7.3.8 Toggle Dataset Sequence

Creates a sequence of display-lists to visualize values of a sequence of Datasets.
The Datasets must use the same type, for example only displacements or only
stresses. To activate the animation, after you have selected “Toggle Dataset
Sequence” choose the first Dataset to be displayed, then the second and then
the last one. Finally choose the entity. The first two datasets define the spacing
between the requested datasets and the third-one defines the last dataset to be
displayed. The last two selections of datasets can be omitted. Then all datasets
which use the same name, starting from the selected one, will be used. The
command ”ds” provides the same functionality.

7.4 Frame

Adjusts the drawing box.

23

7.5 Zoom

Use this command to zoom into a rectangular section of the window. After this
option is chosen, use the mouse to select the opposite corners of a rectangle.
The display will zoom in on the rectangular area. Note the rectangle is never
shown on the screen (see also ”zoom”).

7.6 Center

Used to choose a new center point for the structure. After this option is chosen,
pick either a node, a point or the corner of an entity. To easily find the element
corners, the function ”Toggle Element Edges” is triggered automatically (see
also ”qcnt”).

7.7 Enquire

Used to investigate parameters like the value and the position of a certain node
of the model. Pick a node after this option is chosen. To easily find the element
corners, the function ”Toggle Element Edges” is triggered automatically (see
also ”qenq”).

7.8 Cut

Used to cut elements and to create a section of new elements and nodes. Either
pick three nodes, or, in case a dataset-entity of a vector was already selected,
use the menu entry “vector” and select just one node. The cutting plane is
then determined by the direction of the selected vector (displacements, worstPS
etc.). The three room directions x,y,z can also be used to define a plane normal
to the selected direction. To suppress or enable the immediate ploting of the cut
chose “switch plot” (switch ploting on/off) before you create the cut. This is
necessary if more than one cut should be shown together. So first “switch plot”
then create all the cuts except the last. Then “switch plot” again and create
the last cut. Select “Uncut” to delete the sections and to display the model.

To easily find the element corners, the function ”Toggle Element Edges” is
triggered automatically (see also ”qcut” and ”cut”)

7.9 Graph

Used to generate a 2D-plot. The option “Length” will provide a plot “value
over distance between nodes”. The option “Datasets” will provide a plot “value
over Dataset-nr” and the option “Time” will provide “value over Time”. For
the later two options it is necessary to first create an animation with either the
command ”ds” or the menu option ”Toggle Dataset Sequence” (see also ”graph”
and ”How to generate a time-history plot”). To easily find the element corners,
the function ”Toggle Element Edges” is triggered automatically.

24

7.10 User

This menu item does not exist until the first ”menu” command was executed.
Each “menu” command adds a new user command to the menu. This “menu”
commands are usually stored in a “.cgx” file in the home directory to link them
to the menu during startup.

7.11 Orientation

7.11.1 +x View

To look along the x-axis.

7.11.2 -x View

To look against the x-axis.

7.11.3 +y View

To look along the y-axis.

7.11.4 -y View

To look against the y-axis.

7.11.5 +z View

To look along the z-axis.

7.11.6 -z View

To look against the z-axis.

7.12 Hardcopy

To create a hard-copy during animation, it is useful to stop the animation first
with the middle mouse button while inside the menu area of the main window
and then release one picture after the other with the right button until the
desired amplitude or step is reached.

7.12.1 Tga-Hardcopy

To create a window dump in tga format. You might use the program ”convert”
[12] to convert this format to others.

7.12.2 Ps-Hardcopy

To create a window dump in postscript format. The program convert must be
installed.

25

7.12.3 Gif-Hardcopy

To create a window dump in gif format. The program convert must be installed.

7.12.4 Png-Hardcopy

To create a window dump in png format. The program convert must be installed.

7.12.5 Start Recording Gif-Movie

All frames during an animation are stored. The recording ends after the right
mouse button is pressed while in the menu area. Finally all frames are combined
in the file ”movie.gif” which can be displayed with various tools (Firefox [13] or
realplay). If the animation is stopped with the middle mouse button while in
the menu area, then the movie stops until it is released by pressing the middle
mouse button again. See ”movi” for the keyboard options. Further remarks in
”How to change the format of the movie file”.

7.13 Help

Starts the html help and displays this document. By default it works with the
specified html-viewer Firefox [13] but this can be changed in the ”cgx.h” file.
The search-path for the documentation is also defined in the ”cgx.h” file. Please
make sure that the documentation is in the specified location or change the path
in the ”cgx.h” file and recompile the program after the object-files are deleted.
The default location for the html help is .../CalculiX/cgx X.X/doc/cgx and
/CalculiX/ccx X.X/doc/ccx for cgx and ccx respectively. The html files can be
downloaded directly or compiled from the latex source for this function to work
properly. The INSTALL file explains how to compile the latex code to html.
The INSTALL file is located .../CalculiX/cgx X.X/ and .../CalculiX/ccx X.X/
for cgx and ccx respectively.

If no compiler is available the user may use the ”asgn” command to redefine
the viewer and the help files (see also ”Customization”).

7.14 Toggle CommandLine

Add the command line from the konsole to the graphic’s window and back. The
user may consider to place the command “view cl” to a file named “.cgx” the
user’s home directoy for an automatic switch at startup.

7.15 Quit

This terminates the program without a save.

26

8 Customization

The file “.cgx” located in the $HOME directory will be read at program start.
The following commands might be useful in this context:

• ”asgn”

• ”cmap”

• ”col”

• ”font”

• ”menu”

• ”rot”

• ”subm”

• ”view”

• ”wpos”

• ”wsize”

Example content of a “.cgx” init file:

cmap jet

menu readinp read /home/user/cgx_templates/readinp.fbl

asgn viewer xview

asgn viewformat png

asgn ccxhelpfile /usr/local/ccx.pdf

asgn cgxhelpfile /usr/local/cgx.pdf

asgn browser okular

9 Commands

This section is a reference to all commands and their parameters in alphabetic
order. If a command is typed the mouse-pointer must be in the main window
(figure 2). Only the echo of the input stream is visible in the parent konsole. The
keywords are not case sensitive but all command parameters are case sensitive.
Each reference starts with a short description of the command. The following
syntax is used for these descriptions:

Known commands and syntax:

’..’: Keyword (either uppercase or lowercase)

<..>: Parameter (case-sensitive)

[..]: combination of parameters or optional parameter

(..): Remark

| : OR

27

& : AND

- : from-to

-> : command continues in the next line

RETURN press the RETURN key

Entities—with the exception of nodes and elements—are referenced by names
which can contain letters and numbers. Usually one to four characters is rec-
ommended. If a new entity uses an existing name, the old definition will be
overwritten. To overcome this problem, ”alias” names can be used. An alias
name is defined with the ! sign in front. An already defined alias name can be
referenced by placing the % sign in front. For example:

LINE !L1 %P1 %P2 %SET

will create a line with the alias name L1 and will use the alias names P1 and
P2 to define the end-points and uses the set SET to define the point sequence
between the end-points. The assigned alias name for a given entity can be
enquired with a leading question mark using the prnt command.

9.1 anim

’anim’ ’tune’ <value>|’steps’ <value>|’time’ <value>|->

’real’ [’on’|’off’]|’model’ [’on’|’off’]| ->

’elem’ [’on’|’off’]| ’start’

This keyword is used to manipulate the animation of displacements. See also
”ds” and ”scal”. The amplification is controlled with “tune”. “steps” defines the
number of frames over one periode. “time” controlls the duration of one periode.
“real” switches of the automatic amplification and the real displacements are
used instead. In addition the displacements of the negative part of the periode
is set to zero. “model” switches the static model (undeformed) edges on or of.
“elem” does this for the element edges. Start the animation with ’start’. The
animation stops when using the ’ds’ or the ’view’ commands with appropriate
parameters.

9.2 area

’area’ <set>

This keyword is used to calculate the area and the center of gravity of a set of
shell-elements or surfaces of volume-elements. If a ’dataset’ is active then an
averaged value is calculated.

It averages the nodal values per element and weight it (multipies it) with
the area of that element. The sum of all the weighted element-values is then
divided by the total area of all regarded elements. The center of gravity is also
weighted with the indvidual areas. This works for faces as well. In case the
”qcut” command was used to create a section it is necessary to use the ”comp”

28

command to add the related faces to the set ’-qcut’ which holds the section:

comp -qcut do

Then the ’area’ command can be used:

area -qcut

which produces a listing like that:

AREA:98.437740 CENTER OF GRAVITY: 9.214960 0.663785

24.655288 AVERAGE-VALUE:252.453576

The command writes to the ”stack”.

9.3 asgn

’asgn’ ’n’|’e’|’p’|’l’|’c’|’s’|’b’|’S’|’L’|’se’|->

’sh’|’alpha’|’beta’|’nadapt’ <value>| ->

’bg’ ’on’|’off’ ->

’graph’ ’on’|’off’|<nr>| ->

’max’|’maxr’|’maxc’ [<col>]|’minc’ [<col>] ->

’mem’ ’free|’keep’| ->

’netgen’|’tetgen’| ->

’thrds’ <value>|’rbe’ [<value>|’mpc’]| ->

’usr’ <text>| ->

’viewer’ <[path]file>| ->

’viewformat’ ’ps’|’png’| ->

’browser’ <[path]file>| ->

’cgxhelpfile’ <[path]file>| ->

’ccxhelpfile’ <[path]file>

This keyword is used to manipulate the behaviour of successive commands or
certain values.

It can be used to define the first node or element number which will be used
for the next mesh generation. And it is used to redefine the leading character
of new entities. The default is D for points p, L for lines l, C for combined lines
(lcmb) c, A for surfaces s, B for Bodies b, Q for nurb lines (nurl) L, N for nurb
surfaces (nurs) S, A for sets se and H for Shapes sh. For example

asgn p U

will assign the character U as the leading character to all newly created names of
points. The automatically created names of geometric entities use 4 characters.
If all possible names with the chosen leading letter are in use then the next al-
phabetical letter is chosen as a leading letter, so after PZZZ follows Q000. After
the last letter the amount of characters per name is increased. The maximum

29

number is 8. Each entity has its own name space. Different entities might use
the same name. Remark: Currently nurbs-lines are automatically create splines
sharing the same name. Nurbs-lines can not be used for other purposes than to
be displayed and so far they can not be written to a file.

Meta informations stored in the frd database can be extended:

asgn usr ADDDISP DS:1

will assign or change the User Header Record “ADDDISP DS:1”. Actually this
type of record is automatically generated if the user adds displacements to the
node coordinates (see “Toggle Add-Displacement)” and “User Header Record)”).
The first word in the text is used as a key and the rest is the message. So

asgn usr ADDDISP NONE

will change this User Header Record to the new message “NONE”.
The node related data will be readed if the user selects a certain dataset.

The already stored data are kept by default. With the command

asgn mem free

the current data are freed before the selected data are stored. With

asgn mem keep

the current data are kept. This is useful on computers with limited memory.
The method how the the color fringe plot scale is presented can be chosen

with either

asgn max

asgn maxr

or

asgn maxc m

and

asgn minc m

were ’m’ is the color of the suppressed values, here magenta (see maxc).
The command is also used to control the behaviour of the surface mesh

generator for unstructured triangles. This mesher [15] uses the tree parameters
alpha, beta, nadapt for mesh-control. Current default is 0.4 for alpha and beta
and 4 for nadapt.

30

The surface mesh generator is able to use multiple cores (threads). Per
default the mesher uses only one thread because only in this case the mesh
numbering is reproducable. But since the surface meshing of a CAD geometry
can be very time consumable a certain number of threads is used when the
model is opened in the auto mode (cgx -a file). The actual number of threads
is listed with the command “prnt info”. This value can be changed in the cgx.h
file (NTHREADS). When using

asgn thrds 8

the next mesh generation will use 8 threads and when saving the geometry
this command is stored as well. The user might use this command to store his
personal number of threads in the “.cgx” file in his home directory.

Currently two different tet mesher are available [4] [5]. They can be chosen
with

asgn tetgen

or

asgn netgen

In case Nastran input should be generated it is possible to switch from MPCs
to RBEs when using the send command in combination with the areampc op-
tion. The value after “rbe” represents the thermal expansion coefficient of this
elements:

asgn rbe 0.5e-6

It should be noted that coincident nodes are connected by MPCs either way.
The presentation of the 2D plots generated by “graph” can be switched of or

on and the next running number of the files written with ’graph’ can be defined:

asgn graph off

asgn graph on

asgn graph 11

The viewer used for that presentation can be redefined with

asgn viewer /usr/bin/ghostview

which switches here to ghostview for ps files. The file type used for the 2D
plots can be changed to ’png’ with:

31

asgn viewformat png

But of course the viewer has to be changed as well:

asgn viewer xview

The helpsystem can be redefined with

asgn browser /usr/bin/okular

which switches here to an pdf viewer. Of course the helpfiles must now be
redefined to pdf files with

asgn cgxhelpfile /home/user/cgx.pdf

and

asgn ccxhelpfile /home/user/ccx.pdf

Finally to speed up the execution of batch files in normal operation (with the
grapical window visible) the internal operations necessary for graphical output
can be switched off or on during reading of command lines from a file with:

asgn bg off

asgn bg on

9.4 aver

’aver’ <set>

This keyword is used to average locations of nodes and/or points and of values
at nodes.

9.5 bia

’bia’ <line>|<set> [[<bias>] [<factor>]|

[’mult’|’div’ <factor>]]

This keyword is used to define the bias of a single line or of a set of lines (see
qadd). The bias defines the ratio of the length of the first element to the length
of the last element. For example,

32

bia all 4.5

will force a ratio in which the last element is 4.5 times bigger than the first
one. Real numbers are permitted since version 1.5 (see also qbia). To convert
from pre 1.5 versions, start the program with the -oldbias option. A negative
factor permits to invert the direction of the bias:

bia all 4.5 -1

9.6 body

’body’ <name(char<9)>|’!’ [<surf1> <surf2>]|

[<surf1> <surf2> <surf3> <surf4> ->

<surf5> [<surf6> <surf6>]]|

[<set>]

This keyword is used to define or redefine a volume (body). Each body must
have five, six or seven surfaces to be mesh-able with hexaeder-elements, oth-
erwise it can only meshed with tets if NETGEN [4] is installed. However, it
is sufficient to specify just the ”top” and the ”bottom” surfaces. But if sur-
faces with 3 or 5 edges are involved then this surfaces have to be the ”top” and
”bottom” surfaces. This is also true if surfaces have different line-divisions at
opposite edges. The missing surfaces between the ”top” and ”bottom” surfaces
will be created automatically if they do not already exist (they will always have
4 edges with the same division on opposide edges). But all needed lines must
exist. More precisely, only single lines or existing combined lines (lcmb) can be
detected. The user must define the missing surface if just a chain of lines (and
no lcmb) is defined between two corner points of the ”top” and ”bottom” sur-
faces before he can successfully use the body command. It is a more convenient
way to define a body than the command “gbod” but exactly 2 or all surfaces
must be specified otherwise the body will not be created (The most convenient
way to define bodies is to use the command “qbod”). For example,

body b1 s1 s2

will look for the missing surfaces and if necessary create them if all lines between
the corner points of s1 and s2 are defined; the result is the creation of body, b1.
Or for example,

body ! s1 s2 s3 s4 s5

will create a body and a new name for it. The new name is triggered by the
sign !. Here the body is based on 5 surfaces. If the surfaces are not connected,

33

the body is not mesh-able.

In case a body should only be meshable with tets it can be composed of more
than 7 surfaces. The definition can be provided by a set of surfaces:

body ! surfset

will create a body based on the surfaces referenced by surfset.

9.7 break

’break’

This keyword is used to end the interpretation of a command file. The program
returns to the interactive mode.

9.8 call

’call’ <parameters>

This keyword is used to allow the user to control his own functionality which he
had coded in the file ”userFunction.c”. The default function “hydro” calculates
the hydrodynamic stresses:

call hydro

To list all existing functions type:

call

See ”User-Functions” for further details.

9.9 capt

’capt’ <string>

This keyword is used to define the caption. This commend will show up in the
menu area of the main window below the picture. Initially the filename is used
as caption. A second line can be generated with ”ulin”.

9.10 cmap

’cmap’ ’classic’|’gray’|’inferno’|’jet’|’coolwarm’|

’turbo’|’viridis’

Changes the colormap of the color scale. The default is ’classic’. The user might
use this command to store his personal setting in the “.cgx” file in his home
directory. See also ”steps” to adjust the nr of boxes.

34

9.11 cntr

’cntr’ <pnt|nod|set>|[x y z]

Defines a new rotation center. See also ”qcnt” for the cursor controlled com-
mand.

9.12 col

’col’ <name> <red> <green> <blue> [<maxvalue>]

User defined new colors which can be used with plot/plus. Each of the red,
green and blue values must be fraction of maxvalue (def:1). See also ”prnt”
how to list the available colors. The user might use this command to store his
personal colors in the “.cgx” file in his home directory. For example:

col dg 3 89 26 155

define a dark green (dg) color.

9.13 comp

’comp’ <set|*chars*> ’c’|’d’|’e’|’u’|’f’

This keyword is used to add all entities to the specified set (see seta) which de-
pend on the already included entities (u, up), or to include all entities necessary
to describe the already included entities (d, down).
For example the set ”lines” stores lines and should also include all dependent
points:

comp lines do

Or the set ”lines” should also include all surfs and bodies which depend on
the lines:

comp lines up

In some cases you will need only the end-points of lines. With the option e
(edges)

comp lines e

only end-points are included in the set. Option c (combined lines) adds all
LCMB’s which use the stored lines. One exception to this logic was introduced
for convenience:

comp nodes do

35

will add all faces described by the nodes in set nodes despite the fact that
faces are made from nodes. In addition related faces can be added when using
a set with nodes or/and elements with:

comp set f

Wildcards (*) can be used to search for setnames of a certain expression:

comp E* do

will complete all sets starting with “E”.

9.14 cont

’cont’

This keyword is used to re-start reading of command files (see ”stop”).

9.15 copy

’copy’ <set> <set> [’scal’ <fx> <fy> <fz> <pnt> [a]]|

[’tra’ <dx> <dy> <dz> [a]]|

[’rot’ <p1> <p2> <alfa> [a]]|

[’rot’ ’x’|’y’|’z’ <alfa> [a]]|

[’rot’ <p1> ’x’|’y’|’z’ <alfa> [a]]|

[’rad’ <p1> <p2> <dr> [a]]|

[’rad’ ’x’|’y’|’z’|’p’<PNT> <dr> [a]]|

[’rad’ <p1> ’x’|’y’|’z’ <dr> [a]]|

[’nor’ <dr> [a]]|

[’mir’ <P1> <P2> [a]]|

[’mir’ ’x’|’y’|’z’ [a]]|

[’mir’ <P1> ’x’|’y’|’z’ [a]]

This keyword is used to create a copy of a set (see seta about sets). Geometry,
nodes and elements with their results can be copied. The copy of results is
useful to evaluate additional sectors in case of a cyclic symmetric calculation.
The copy is included in the new set. Existing sets are extended by the copied
entities if the last parameter “a” (append) is provided. Several transformations
are available. For example scal creates a scaled copy, the scaling factors fx, fy,
fz can be chosen independently,

Several transformations are available. For example scal creates a scaled copy,
the scaling factors fx, fy, fz can be chosen independently,

36

copy part1 part2 scal 2 P0
copy part1 part2 scal 1 1 2 P0

tra will create a copy and will move it away by the vector dx, dy, dz and
the optional parameter a will assign the new entities to sets were the mother of
each entity is included (see “setl” on how to lock and therefore exclude certain
sets from that behaviour),

copy set1 set2 tra 10 20 30 a

rot will create a copy and will move it around the axis defined by the points p1
and p2 by alfa degrees,

copy set1 set2 rot p0 px 20.

or the axis of rotation is given by specifying one of the basis coordinate axes:
copy set1 set2 rot x 20.

or just one point and a vector of rotation is given by specifying one of the
basis coordinate axes: copy set1 set2 rot p1 x 20.

rad will create a copy and uses the same transformation options as ’rot’ or
will create a spherical section if just a single point is defined,

copy sphere1 sphere2 rad pP0 10.

nor will create a copy and will move it away in the direction of averaged nor-
mal local vector. This requires information about the normal direction for each
entity. Nodes will use associated element faces and geometric entities will use
the element faces, surfaces or shapes which are stored with them in the set1,

copy set1 set2 nor 1.2 a

mir will create a mirrored copy. The mirror-plane is placed normal to the
direction running from P1 to P2 and placed at P2,

copy section1 section2 mir P1 P2.

as with ’rot and ’rad’ additional transformation options are available:

copy section1 section2 mir P1 x

places the mirror at P1 with its normal direction in ’x’ direction

copy section1 section2 mir x

37

Places the mirror in the origin with its normal direction in ’x’ direction.

9.16 corrad

’corrad’ <set>

This is a very special command to adjust improperly defined arc-lines, like in
fillets. The center points of arc-lines included in the set are moved in a way that
each arc-line will run tangentially into a connected straight line. But because
the end-points of the arc-lines are not moved only one side of each arc-line will
run into a connected line. The other side is not controlled and might end in
a sharp corner. Therefore for each arc-line exactly one connected straight line
must be included into the set (figure 4).

Figure 4: Effect of the corrad command

9.17 csysa

’csysa’ <sysNr> <set>

Specifies the displacement coordinate system for each node (Nastran only).

9.18 cut

’cut’ [<set>|<nod>] | [<pnt|nod> <pnt|nod> <pnt|nod>]

38

This keyword is used to define a cutting plane through elements to visualize
internal results. New elements are generated and stored in the set “-qcut” for
this purpose. The plane is either defined by three nodes or points, or by just
one node if a vector dataset-entity was already selected. The cutting plane
is then determined by the direction of the vector (displacements, worstPS, ..).
The menu option ”Show Elements With Light” or the commands ”ucut”, ”view
surf” or”view volu” will display the whole model again and will delete the
elements generated by cut or qcut. This command is intended for batch-mode.
See ”qcut” for the cursor controlled command. The three nodes or points may
be provided by specifying a set of either unordered or ordered type (a sequence).
The elements generated by successive qcut or cut add up until they are deleted.

9.19 del

’del’ [’p’|’l’|’c’|’s’|’b’|’t’|’v’|’S’|’L’|’se’|’sh’ <entity>]|

[’l0’ <entity>]|

[’se0’]|

[’mesh’]|

[’pic’]

This keyword is used to delete entities, the whole mesh (see also qdel) or a
background-picture. For example,

del se part

will delete the set “part” but all included entities are untouched. The following
entities are known:

Points p, Lines l, Combined Lines c, Surfaces s, Bodies b, Node Texts t, values
v, Nurb Surfaces S, Nurb Lines L, Sets se and Shapes sh.

When an entity is deleted, all dependent higher entities are deleted as well.
Special cases are

del l0 set (l¡zero¿)

were all lines with zero length in set ”set” are deleted and

del se0

will delete all empty sets. If a value is to be deleted it is necessary to mask
it with a leading ’\’ otherwhise it would be replaced by its content:

del v \val

will prevent the substitution of val1 by its content.

39

If a background-picture was loaded with the ”read” command it can be
deleted with:

del pic

See also ”zap” on how to delete a set with all its referenced entities.

9.20 dist

’dist’ <set> [<target-set>|<shpe>] ->

[’tra’ <dx> <dy> <dz> <offset>]|

[’rot’ <p1> <p2> <offset>]|

[’rot’ ’x’|’y’|’z’ <offset>]|

[’rad’ <p1> <p2> <offset>]|

[’rad’ ’x’|’y’|’z’ <offset>]|

[’nor’ <offset> <tol>]

measures distances between entities of one or of two sets. For example

dist set

gives the distance range of the points and nodes in the set in x,y and z di-
rection.

If just one point or node is included in both provided sets

dist set1 set2

then as with ”qdis” the cartesian distances, the angular distances and the radial
distances are determined.

If just one point or node is included in the first set and several points or
nodes in set2

dist set1 set2

then only the extremal cartesian distances from the sole point or node in set1
to all entities in set2 are determined (set1-set2).

Further parameter combinations work analogous to the ”proj” command
and calculates distances to shapes or surfaces. Please look there for details, for
example:

dist set1 set2 rot p0 px

The average-, maximum- and minimum distance is determined. The distance is
measured normal-, rotational-, radial or translatoric.

The command writes to the ”stack”.

40

9.21 div

’div’ |

<defdiv>|

<line> [<division>]|

<set> [<division>]|

[’mult’|’div’ <factor-div> <factor-bias>]|

[’auto’ <node-dist> <angle> <elem-ratio>]

This keyword can be used to re-define the default division of lines:

div 4

The div keyword works on a line or a set of lines (see qadd). The division
controls the number of nodes created when the geometry is meshed (see elty
and mesh). For example,

div all 4

attaches the division of 4 to all lines. With the keyword mult or div in combi-
nation with a value, it is possible to multiply or divide already assigned divisions:

div all mult 2.

Or in case you need a starting-point for the individual divisions you can use
the option auto with the optional parameters node-dist and angle. Node-dist
is the maximum allowed distance between nodes and angle is the maximum al-
lowed angle defined by three sequential nodes. If one parameter is not fulfilled
then the division is halved until the requirements are fulfilled. Default values
are defined in the file cgx.h and can be listed with

div

without parameters

div all auto

uses the defaults. The following example sets them expicidly:

div all auto 2. 10. 0.5

will use a maximum element lenght of 2., the angle between successive nodes
is less than 10 degree and the minimum element is only half of the maximum-
length as long as the length of the line is sufficient. It should be noted that it
could make sense to use different values for different sets.

41

9.22 ds

’ds’ [<1.Dataset-Nr> [<2.Dataset-Nr>] [<n.Dataset-Nr>] ->

[’a[h]’|’e[h]’ [<entity-nr> (up to 4 times)]]|

[[’+’|’-’|’*’|’/’] <Dataset-Nr> [’c’]]|

[’o’ <value> [<entity-nr>]]|

[’p’ <power> [<entity-nr>]]|

[’s’ <value> [<entity-nr>]]|

[’r’ <key> [<parm1>] [<parm2>] [..<parm5>]]]|

[’g’ <name> [[<ncomps>|<0>] <value> <text> <type> ->

<step> <analysisName>]]|

[’e’ <name> <comp> <type> <row> <column>]|

[’f’]

This keyword is used to select, modify or generate one or more Datasets (ds)
and one or more Entity (e). In addition it can be used to generate or modify
related parameters which might store step specific descriptions. The dataset has
to be a positive number which has to match the nr in the Dataset-menu or an ’l’
(lower case ’L’) which is interpreted as the last available Dataset or a negative
number. Then it is interpreted as the last ds minus the specified number. For
example

ds 1

will just select the first Dataset and will write some informations about it to
stdout and to the ”stack” if active. It will write ds-nr, lc-name, ds-value, ds-
text, ds-name, nr-of-entities

ds 1 e 1

will display the first entity of the first Dataset and will write some informa-
tions about it to stdout or to the ”stack” if active. It will write ds-nr, lc-name,
ds-value, ds-text, ds-name, entity-name.

ds l e 1

will display the last Dataset. To start the animation of the second-to-last
Dataset right away:

ds -1 a

Or generate an animated fringe plot by adding the desired entity:

ds -1 a 4

Sequences can be defined by specifying one to three datasets and by extend-
ing the ’e’ parameter by an ’h’ (’history’):

42

ds 2 eh 1

Here all datasets of the same type as ds 2 are selected. The spacing between
datasets of the same type is only evaluated for the first step. A unique step-with
is therfore needed.

ds 2 10 eh 1

Here the datasets 2, 10 and all successive ones of the same type with a spacing
of 8 are selected.

ds 2 4 10 eh 1

Here the 1st entity of each second Dataset is selected. The selection starts
at the second- and ends at the 10th dataset. If more than one entity is defined
then a vector-plot will be displayed. If a 4th entity is defined then this entity
will be used for the basic color-plot:

ds 2 4 10 eh 12 13 14 15

In case the deformed shape should be shown together with the fringe plot in a
sequence of datasets then the ’e’ parameter has to be replaced by an ’a’ char-
acter.

ds 2 ah 1

REMARK: So far vector plots can not use the deformed shape. Therefore
only one entity is supported.

In addition, it is possible to scale or offset the entities of the specified datasets:

ds 1 s 1.2

will scale all entities of dataset 1 by a factor of 1.2.

ds 1 + 3

will create a new dataset which stores the addition of dataset 1 and 2.

ds 1 + 3 c

using parameter ’c’ will change the dataset 1 with the result of the addition
of dataset 1 and 2.

ds 1 p 1.2 3

43

will use the given exponent to scale entity 3 of dataset 1 by an exponent of
1.2.

ds 1 o 200.

will add a value of 200 to all entities of dataset 1.

ds 1 o 200. 2

will add a value of 200 to the entity 2 of dataset 1. Each dataset might use
related parameters (see Parameter Header Record for the format of a parame-
ter record). This parameters can be overwritten or created:

ds 2 4 10 r TAMB 1

Each second dataset from 2 to 10 gets a related parameter ’TAMB’ with the
value ’1’. If the value is nummeric it can be used by the “graph” command.

A new dataset in which all values are initiallized to zero is generated with:

ds g VELOCITY 3

The ’name’ VELOCITY will appear in the menu as the dataset name and can
be 8 character long. It has 3 components (’ncomps’, default is ’1’). The other
parameters are optional:

• value: A nummeric value, usually time or frequency (used by “graph”).

• text: A describing text (used by “graph”).

• type: Analysis type (static:0,time step:1,frequency:2, etc.).

• step: Step or increment number

• analysisName: Type of analysis (description).

The current dataset name is modified if only the name is given:

ds g VELOCITY

The other parameters of the current dataset can be modified if the number
of components is set to zero: ds g VELOCITY 0 1e4 test

The entities of the current dataset are manipulated with:

ds e V 2

The ’name’ V will appear in the menu as the entity name and can be 8 character

44

long. It is the second entity (component) of the current dataset (default is ’1’).
The third and following parameters can be omitted for a scalar.

• name: entity name

• comp: entity nr (component)

• type: Mathematical data type (scalar:1, vector:2, matrix:4, etc.)

• row: sub-component index or row number

• column: column number if matrix

The ’row’ paramter defines the location of the enitity in the vector or the row
of the matrix. The dataset is finalized with:

ds f

The maximum- and minimum value over all nodes for the current dataset will
be determined and stored together with the corresponding node numbers. This
values are needed for the graphic display.

The values at the nodes are manipulated with the ”node” command. With
that command the new dataset gets its data. See also “How to generate a new
dataset” for further details.

More details can be found in section ”Nodal Results Block”.

9.23 elem

’elem’ <nr|!> [set]|

[<firstNode> .. <lastNode> ’be2’|’be3’|’tr3’|’tr6’|->

’qu4’|’qu8’|’he8’|’he20’]

This keyword is used to define elements based on nodes and its type (see section
Element Types in the appendix for the correct node-order). For example,

elem 1 1 2 3 4 qu4

creates a shell element with four nodes. If the an automatically generated name
is desired, then type ”!” instead of a name. Shell elements can be created based
on a set of element-faces:

elem ! faceset

This might be useful to create a layer of shell elements on volume elements.

45

9.24 else

’else’

See the “if” command.

9.25 else if

’else if’ <value> ’eq’|’ne’|’==’|’!=’|’<’|’>’ <value>

See the “if” command.

9.26 elty

’elty’ <set> ’lock’|’ulock’|->

’be2’|’be2r’|’be2f’|’be2d’|->

’be3’|’be3r’|’be3f’|->

’tr3’|’tr3u’|’tr3e’|’tr3s’|’tr3c’->

’tr6’|’tr6u’|’tr6e’|’tr6s’|’tr6c’|->

’qu4’|’qu4e’|’qu4s’|’qu4c’|->

’qu4r’|’qu4er’|’qu4sr’|’qu4cr’|->

’qu8’|’qu8e’|’qu8s’|’qu8c’|->

’qu8r’|’qu8er’|’qu8sr’|’qu8cr’|->

’he8’|’he8f’|’he8i’|’he8r’|->

’he20’|’he20r’|’pe6’|’pe6f’|’pe15’|->

’pe15r’|’te4’|’te4f’|’te10’|’te10m’|->

’te10t’ [<parameter>]

This keyword is used to assign a specific element type to a set of entities (see
section Element Types in the appendix). In most cases it can be used to specify
the element type before the mesh is created. In case of unstructured meshes
more specific element attributes have to be assigned after the mesh was created
(from tr6u to tr6c or te10 to te10t etc.).

The element name is composed of the following parts: The leading two
letters define the shape (be: beam, tr: triangle, qu: quadrangle, he: hexahedra,
pe: penta, te:tetraeder), then the number of nodes and at last an attribute
describing the mathematical formulation or other features (c: axisymmetric,
e: plain strain, s: plain stress, u: unstructured mesh, r: reduced integration,
i: incompatible modes, f: fluid element for ccx, t: initial temperatures are
interpolated linearly within the tet element (ccx:C3D10T)).

If the element type is omitted, the assignment is deleted. If all parameters
are omitted, the actual assignments are posted:

elty

will print only the sets with assigned elements. Multiple definitions are pos-
sible. For example,

46

elty all

deletes all element definitions. If the geometry was already meshed, the mesh
will NOT be deleted. If the mesh command is executed again after new assign-
ments have taken place, additional elements could be created.

elty all he20

assigns 20 node brick-elements to all bodies in the set all.

elty part1 he8

redefines that definition for all bodies in the set part1.

elty part2 tr6u

assigns 6 node unstructured triangle elements to all surfaces in set part2.

elty part2 tr6u 0.5

will do the same but specifies a mesh refinement factor of 0.5 (>1: coarser
than the average boundary spacing, <1: denser). Be aware that specialized
unstructured meshes must be created by using two times the elty command.
First time the general unstructured type before the mesh is actually created
and afterwards a redefinition into the more specific type:

elty part2 tr6u
mesh all
elty part2 tr6c

creates an axisymmetric unstructured mesh.

elty part3 te10

assigns 10 node elements to all bodies in set part3. But this works only if
TETGEN [5] or NETGEN [4] is installed and the locations of their binaries
tetgen or ng vol are included in the path system variable.

elty part3 te10 3.5

will do the same but specifies a target size for the elements. In this case the
modified program ng vol from the cgx-distribution must be available. Replace
the original ng vol in the NETGEN package and build it again. Be aware that
specialized unstructured meshes must be created by using two times the elty
command. First time the general unstructured type before the mesh is actually

47

created and afterwards a redefinition into the more specific type:

elty part2 te10
mesh all
elty part2 te10t

The penta element types are not supported for meshing but elty can be used
to redefine the attributes (pe6 to pe6f). Penta elements are only created if a
mesh of triangles (2D) is sweeped in 3D. This procedure is used to create quasi
2D cfd meshes.

Sometimes it is necessary to prevent element definitions from beeing changed
again. This can be achived with

elty ¡set¿ lock

the element definition and mesh density of all referenced bodies, surfaces and
lines is fixed until unlocked with:

elty ¡set¿ unlock

The fluid network element types are be2f and be3f. The be2f has to be used
at the begin and the end of a network. This elements will use the special node nr
’0’ at the entry and exit. This node-nr is automatically assigned to the element
definition when written in the ccx format. All other elements in the network
must use the be3f type. The detailed element type definition has to be done in
the ccx input file based on element-sets.

9.27 endif

’endif’

See the “if” command.

9.28 endwhile

’endwhile’

See the “while” command.

9.29 enq

’enq’ <set> <set> [’set’ <setname>]|->

[’rec’ <x-value>|’_’ <y-value>|’_’ <z-value>|’_’]|->

[’cx’|’cy’|’cz’ <r-value>|’_’ <fi-value(deg)>|’_’ ->

<axis-value>|’_’] ->

48

<tol> ’i’|’a’|’h’|’l’ [<value>]

This command is used to locate entities from a certain set (first provided set)
and stores them in the second set. The following entities are identified: nodes,
points, lines, surfaces. But surfaces can only be identified if the command “rep
<setname>” was issued before. In case of nodes with related values (results)
it will also determine the highes or lowest value in the specified range, or, all
nodes above or below a certain value. The coordinate of the search location
might be taken from one node or point in a given 3rd set or given in cartesian
coordinates (option rec) or cylindrical coordinates (option cx, cy, cz). Some
coordinates might be omitted to specify an infinite range. The ’ ’ key has to be
used in this case. The mode is defined by the keys ’i’ individual, ’a’ all, ’h’ high,
’l’ low, were h and l will search the highest or lowest value in range. This value
will also be written to a file for automatic processing purposes. For example

enq all newset rec 10. 100. 0.1 i

will search for entities in set ’all’ at the given location x:10. y: (infinite range,
triggered by the ’ ’ key) z:100. with a tolerance of 0.1 and only the closest entity
of all kinds of entities are stored in set ’newset’, triggered by the ’i’ key. With
the ’a’ key all in range would be stored. The key ’h’ or ’l’ would trigger a search
for the highest or lowest value in the specified range. If the search should be
done close to a certain node:

enq all newset set nodeset 0.1 h

will search for the node with the highest value around the node stored in nodeset
inside a radius of 0.1.

In combination with a certain value

enq all newset rec 10. 100. 0.1 h 1013.

all nodes with a value above “1013.” would be stored in set “newset”. The
command

enq domain1 newset cx 100. 180. 10. 0.1 a

will search for entities in set ’domain1’ at radius:100. around x at fi:180 de-
gree and x:10. with a tolerance of 0.1. All entities in range are stored in set
’newset’.

The following example illustrates the use of “enq” to find the highest value
close to a location given by a node-number:

activate dataset 3 with entity 7:

ds 3 e 7

read a file with one node to define a set:

49

read pos1.frd pos1

search the highest value around a radius of 1:

enq all t set pos1 1. h

move the file with the search result to a meaningfull name:

sys mv enq_lc3_e7_1.out pos1.out

One important remark: The command will select not only nodes in the se-
lection range but also geometric entities (lines etc.) which in turn reference
their related nodes. This behaviour can mix up the desired result when the user
expects to find just nodes in the selection range. Therefore it is better to first
generate a set only with nodes as a basis for ’enq’:

seta nodeset n all
enq nodeset new ...

The command writes to the ”stack”.

9.30 eprop

’eprop’ <set>

Calculates the maximum element edge length, volume and quality factor. The
maximum values are stored at nodes. Not all element types are supported.
Second order elements are treatened as linear regarding length and quality. The
quality measure used is proportional to the ratio of the longest edge divided by
the radius of the inscribed sphere. The proportionality constant is such that
the quality is 1 for an equilateral tetrahedron. For all other elements it exceeds
1. The bigger this number, the worse the quality.

9.31 eqal

’eqal’ ’jbir’|’aspr’|’mca’ <value>

The keyword without parameters lists the current element quality thresholds
(0==off):

• JBIR: The maximum ratio of jacobian determinants xsj between all gaus-
points. Were xsj = Vworldcoordinates / Velementcoordinates and jbir =
xsj-max / xsj-min. Supported element types he8, he20, te10.

• ASPR: Element aspect ratio between all element sides. Supported element
types he8, he20.

• MCA: Maximum corner angle between all element sides. Supported ele-
ment types he8, (he20 not regarding midside nodes).

Parameter “value” sets the value of the threshold. The element-quality is
checked with ”plot eq all”. The user might use this command to store his
personal parameters in the “.cgx” file in his home directory.

The command writes to the ”stack”.

50

9.32 exit

’exit’

This command terminates the program and saves the geometry (if any) to a file
named as the input file but with the extension .fbd. If a file with that name
exists already, then this file will be saved with the new file extension .fbb as a
backup (see also save).

9.33 fil

’fil’ <line> <line> <radius>

This command creates an arc of a given radius between the two specified lines.

9.34 flip

’flip’ [<set> <e>||<s>]|

[<s> [’auto’]]

This command changes the orientation of a set of shell-elements, bodies or
surfaces. In case of a single surface with the parameter “auto” all surfaces will be
flipped in a way that they share a common direction (in or out of a volume). The
related elements are also flipped. See qflp for the cursor controlled command.

9.35 flpc

’flpc’

This command changes the colour of the scale. Initialy the default is red for
high values and blue for low values. The command will invert the current state.

9.36 font

’font’ ’d’|’l’|’c’ <value(1-6)>

This command changes the drawing-font. Six fonts of different heigh are avail-
able:

font d 6

selects the greatest font for the drawing area were

font l 1

selects the smallest one for the legend. The default is selected if no number
is specified. The font for the command line is selected with

font c 6

51

9.37 frame

’frame’ [<setname>]

This command fits the model or the contents of a given set into the drawing
space. This command is usually automatically triggered.

When executing commands which increase the used space then it might
happen that geometry is clipped and can not be seen or accessed anymore.

9.38 gbod

’gbod’ <name(char<9)>|’!’ ’NORM’ ’+|-’ <surf> ’+|-’ <surf> ->

.. (5-7 surfaces)

This keyword is used to define or redefine a body in the most basic way (see also
“qbod”). Each body must have five to seven surfaces to be mesh-able. However,
the number of recommended surfaces is six. The first two surfaces should be
the ”top” and the ”bottom” surfaces. For example,

gbod B001 NORM - S001 + S002 - S005 - S004 - S003 - S006

will create a body B001. The keyword ”NORM” is a necessary placeholder
for future functionality but has no actual meaning. Next, follow the surfaces
with a sign ”+” or ”-” in front that indicates the orientation of each surface.
These signs will be corrected automatically if necessary. If the an automatically
generated name is desired, then type ”!” instead of a name.

9.39 gonly

’gonly’ ’on’|’off’

This keyword is used to erase the contents of the menu area. Sometimes this is
useful for hardcopies.

9.40 graph

’graph’ [<amplitude|*chars*> ’amp’]|

[<material|*chars*> ’mat’]|

[<set|seq> ’length’ [’+’|’-’|’+c’|’-c’]]|

[<set>|’-p’ ’nr’|’time’|’descr’|<parameter-name> ->

[<Dataset-name> <entity-name>|<parameter-name>] ->

[<first-Dataset-Nr> <last-Dataset-Nr>]]

This keyword is used to create time history plots of nodal values. The val-
ues of the pre-selected nodes stored in the referenced set will be written to a
file called ”graph <nr>.out”. A gnuplot command file will be written called
”graph <nr>.gnu” and executed. The resulting file ”graph <nr>.ps” will be au-
tomatically displayed with the postscript viewer unless the user has used “asgn”

52

to turn the presentation off (and the <nr> can be defined). The default viewer
is ”ghostview” but this can be changed in the ”cgx.h” file before the program
is build. See also “How to generate a time-history plot” for further details.

A set with the nodes of interest must be created (usually with “qadd”) be-
fore a graph can be drawn. If the parameter l (length) is used to plot values
along the length of a set of nodes then this set should be of the sequence type
(usually created with “qseq”):

graph seq length

The length is calculated as the sum of the distances between successive nodes.
Usual sets (as created with “qadd”) will be copied into a temporary ordered set
in a way that the positive direction points away from the origin of the coordi-
nate system. The direction can be chosen with a ’+’ or ’-’ sign following the
’length’ parameter (’+’ is default). This temporary ordered set is kept when a
’c’ follows the sign. The name of this set is equal to the original setname but
with an ’N’ in front.

Instead using existing nodes it is possible to use a line or a combined line
“lcmb” as a method to generate new locations for data-points. The current
displayed results will be automatically mapped to this locations and shown in
a 2D graph over the length of the line:

graph lineset length +

The set lineset stores a line. Since a ’+’ was given the graph starts at the
beginning of the line. With a ’-’ it would start at the end of the line.

Since version 1.8, there are two ways of operation. One way is to specify the
Datasets and the entity as parameters of the command

graph set time DISP D1

which will display the displacement D1 of nodes in ”set” vs. the dataset-time of
all ”DISP” Datasets. The first and the last dataset can be specified optionally.

For the traditional way, a sequence of datasets must have been selected (see
Toggle Dataset Sequence). After the selection of the datasets, an Entity must
be specified. Then, the user could use the graph command to generate the
history-plot of this pre-defined sequence. The command

graph set nr

will display the values on the node-positions vs. the dataset-numbers. The
command

graph set time

will display the values on the node-positions vs. the dataset-values (usually time

53

or frequency, see Nodal Results Block, parameter “VALUE”)) and the command

graph set descr

will display the values on the node-positions vs. the dataset-description (only
makes sense if the description is a numerical value. See Nodal Results Block),
parameter “TEXT”, for the location of this data in the frd-file.

In addition, a second data-file is written ”graph.out2” which stores the node-
number and the node-coordinates and all values at this node-position for all
datasets. This file can be used to display values over node-positions, etc. It is
up to the user to generate a suitable plot out of this data.

The ”graph” files can be edited and combined. For example to plot one type of
value vs. another type of value.

If an ccx- or Abaqus-input-file was read then it is also possible to create
time history plots of the amplitudes (*AMPLITUDE in ccx) or the material-
properties can be displayed (*MATERIAL in ccx):

graph amplitude-name amp

graph material-name mat

Wildcards (*) can be used to search for amplitudes or materials of a certain
expression.

The parameters related to datasets can also be displayed with the graph
command:

graph -p time DISP HID

This command plots the nodal-diameters used in a cyclic symmetry calcula-
tion over the dataset-value. Only few parameters are written from ccx in frd-
format. Other applications might define its own parameters in frd-format (see
Parameter Header Record for the format of a parameter record). If needed cgx
can also create this dataset parameters, see the ”ds” command on how to do it.

The running number in the name of the written file is stored in the value
!graph Nr (the leading ’ !’ prevents the value from beeing written by the send
or save command). It can be used in a subsequent ”sys” command to change
the filename.

9.41 grpa

’grpa’ <nr> <set> [’dyna’]

54

This command allows to assign elements to a group. The group number is an
element attribute. One element can only belong to one group. This command
assigns a group number to certain elements stored in a given set. An ls-dyna
*PART command is written to a file if the parameter dyna is given. The group
number is used as a property ID in an eventually written mesh file in ls-dyna for-
mat. See “Remarks Concerning ls-dyna” and “Element Definition Block” how
this applies to the result format (frd).

9.42 grps

’grps’

The result format (frd) allows to assign elements to a group. One element can
only belong to one group. This command creates sets and stores all elements of a
certain group in a certain set called “+grp[nr]”. See “Element Definition Block”
how this applies to the result format (frd).

9.43 gsur

’gsur’ <name(char<9)>|’!’ ’+|-’ ’BLEND|<nurbs>|<shape>’ ->

’+|-’ <line|lcmb> ’+|-’ <line|lcmb> .. (3-5 times)

This keyword is used to define or redefine a surface in the most basic way (see
also qsur). Each surface which is intended for a regular mesh must have three
to five edges which might consist of a single line or a combined line (see lcmb)
to be mesh-able. However, the recommend amount of edges is four. For example,

gsur S004 + BLEND - L002 + L00E + L006 - L00C

will create the surface S004 with a mathematically positive orientation indicated
by the ”+” sign after the surface name. The keyword ”BLEND” indicates that
the interior of the surface will be defined according to Coons [14] or a NURBS
surface (nurs) or shape (shpe) is referenced. It should be mentioned that only
nurbs or shape related surfaces can be meshed with unstructured triangles. Use
a ”+” or ”-” in front of the lines or lcmbs to indicate the orientation. These
signs will be corrected automatically if necessary. If the surface is intended for
an unstructured mesh it is not necessary to care about the correct orientation of
the lines and the number of edges is not limmited. If automatic name generation
is desired, then use ”!” instead of a name.

9.44 gtol

’gtol’ [RETURN]|<auto>|<geometric-tol>

This keyword is used to enquire the default geometric tolerance:

gtol

55

Or it is used to recalculate the geometric tolerance:

gtol auto

Or it is used to set the geometric tolerance:

gtol 0.1

The merg command will recognize points or nodes as equally located when
the distance between them is less than gtol.

The command writes to the ”stack”.

9.45 hcpy

’hcpy’ [[’gif’|’png’|’ps’|’tga’] [’name’]]|

[make [ls]]|[clean]

This keyword creates a hardcopy in one of the above formats. Default is tga.
Use the program ”convert” to convert to other formats if needed.

hcpy ps

will create a ps file with the default name hcpy <nr>.ps

hcpy ps name

will create name.ps

hcpy make ls

will bundle all ps files created in one file using the landscape (ls) format. The
ls parameter may be omitted. A maximum of six pictures is placed on each page.

hcpy clean

will remove all ”hcpy” files. See also the commands ”ulin”, ”rot”, ”ds”, ”max”,
and ”min” which might be used in hcpy batch files. These commands should
be used in the shown order before using the ”hcpy” command.

The command writes the file-name and -nr to the ”stack”.

9.46 help

’help’

This keyword prints a short overview of all commands.

56

9.47 if

’if’ <value>|<const> ’eq’|’ne’|’==’|’!=’|’<’|’>’ <value>|<const>

This keyword is used to compare two values (“valu” or constant numbers). If
the compare is True the following commands are executed. If the compare is
False the code after ’else’ is executed. Normal operation continues after ’endif’:

if arg1 == arg2

will skip successive commands when the numerical value stored in ’arg1’ is
not equal to the numerical value stored in value ’arg2’. The values are locally
converted to ’float’ format for the numerical comparison. The ’eq’ and ’ne’ com-
pare strings and should not be used for numerical values since no conversion to
a common format is done. Two strings are equal if they have the same length
and all characters are equal.

See also “while”, “valu”, “stack” and “How to run cgx in batch mode”.

9.48 int

’int’ <line> <line>

This command creates the intersection point between the two specified lines.
The longer part of the given lines is kept. The shorter part will be erased.

9.49 init

’init’ <internal parameters>

This command defines the window and model size, the model position, rotational
center, fonts and others. It is created and written to a file by the “send”
command. If that command should change the window dimensions and is used in
a batch file, it has to be used in the first line. Otherwhise the window dimensions
take only effect after the batch file was completely parsed and executed. A batch
file could look like that::

read init.fbl

read ccx.frd new

ds 1 e 1

plot fv all

hcpy png

quit

If the window size is not affected by the command then it is not necessarily the
first command in the batch file.

57

9.50 lcmb

’lcmb’ <name(char<9)>|’!’ [’+|-’ <line> ’+|-’ <line> ’+|-’ ->

<line>..(up to 14 lines)]|

[’ADD’ ’+|-’ <line> ’+|-’ <line> ->

’+|-’ <line>..(up to 14 lines)]

This keyword is used to define, extend or redefine a combined line (lcmb). Com-
bined lines are necessary if the edge of a surface should be made of more than
one line. Usually the user does not create lcmb’s directly. They are created
automatically during the process of defining a surface with the command qsur.
There is no limitation to the number of lines in a combined line. However with
one command, not more than 14 lines can be specified at a time. To specify
more than that or to extend an existing lcmb a modify command has to follow.
For example,

lcmb U260 + U249 - U248 - U247 - U243 - U237 - U236 - U231 - U219

defines the lcmb U260 with 8 lines and their orientation in the lcmb. The
following command

lcmb U260 ADD - U218 - U217

extends the lcmb U260 by two additional lines.
It should be noted that an existing lcmb can be converted into a spline with

the command seqc.

9.51 length

’length’ <set>

This keyword is used to calculate the length of all lines stored in a set.
The command writes to the ”stack”.

9.52 line

’line’ <name(char<9)>|’!’ <p1> <p2> <cp|seq> <div> [<bias>]

This keyword is used to define or redefine a line. A line depends on points. A
line can only be defined if the necessary points are already defined. Attention:
The points p1 and p2 must not lie on the same location. There are three differ-
ent types of lines available. The straight line

line l1 p1 p2 4

is defined by: its name l1 (the name could have up to 8 characters), by the
points p1 and p2 and optionally by the division. The arc

58

line ! p1 p2 cp 4

needs a center point cp. The radius changes linear from p1 to p2 if the center-
point cp is excentric. The name is chosen automatically (triggered by the char-
acter !). The spline

line l1 p1 p2 seq 4

needs a so called sequential-set, seq (use the command “seqa” or “qseq” to
define such a set). This set seq stores the spline points between the end-points
in the right order. The spline function is described in [16]. Usually, a line is
defined interactively with “qlin”.

The bias is used to change the distances between successive nodes:

line l1 p1 p2 4 1.1

The bias of 1.1 means that each successive node is 1.1 times farther away. Only
if a bias is given can the division be greater than 99.

ATTENTION: If the user does not provide a bias only the last two digits
of the given ’division’ are used to define the division itself. The leading digits
define a bias. But in a different way as explained above. Here the bias defines
the length increase between the first and last element on the line. If the bias
uses more than one digit in front of the division, the number has to be divided
by a factor of ten to get the bias (10130 means a bias of 10.1 and a div of 30).
A negative number changes the direction of the bias:

line l1 p1 p2 -404

The number -404 specifies a division of 4 with a bias of 4 but the first node
distance is 4 times longer than the last.

9.53 lnor

’lnor’ <name|!> [<set>|[<p1> <p2> <p3>]] <length>

A new line normal to a plane defined by three points and a length is created. It
starts at the last point. The three points may be provided by specifying a set
of either unordered or ordered type (a sequence).

9.54 mata

’mata’ <Material-Nr> <set>

This keyword is used to assign a material-number to a set of elements. Currently,
this feature is only useful if the NASTRAN format is used. The material-number

59

is a numeric attribute assigned to each element of the mesh and will be stored
with the mesh in the frd-format or nastran-format (see send). For example,

mata 7 part

assigns the material-number 7 to all elements in the set part. Elements can
have just one material-number. The default number is 1. These numbers will
be saved with the mesh if the database is written to the file-system with the
command:

send all frd or send all nas

If the frd-file is used later, the material-number(s) are available immediately.

9.55 map

’map’ <slave-set> <master-set> ->

[[’surf’]|

[’volu’]|

[’x’|’y’|’z’|’rx’|’ry’|’rz’]] ->

’ds’[<nr>] [’nex’]

This keyword is used to map (or interpolate) values from one mesh to another.
For example

map slave master surf ds1

will map the values from Dataset 1 to the nodes of set slave. All available
datasets will be mapped if no number follows the “ds” parameter. The param-
eter “surf” is used for mapping of values from element faces to element faces
and their nodes (2D or 3D). Do not use internal nodes or volume elements! A
typical application would be the mapping of pressure. The parameter “volu”
triggers the mapping from a 3D mesh to another 3D mesh of the same shape
(i.e. temperatures). The parameters “x,y,z” are used for mapping from 2D
to 2D/3D in the indicated direction. The parameters “rx,ry,rz” are used for
rotational mapping of 2D to 2D/3D around the x,y,z-axis. The “master” set
must include the nodes and their elements. The optional parameter ’nex’ pre-
vents extrapolation and outside slave nodes get a zero value and they are stored
in set ’-notMapped’. Unconnected nodes are not allowed. Usually the master
nodes (on which the values are known) were included from an external result
file with the “read” command (with the parameter “add”). For further details
see “How to map loads” in the appendix. Remark: The 3D mapper uses multi
threading. The number of cores is defined in cgx.h (NTHREADS).

60

9.56 mats

’mats’

This keyword is usually used when a mesh with mateial numbers was read. For
example a native-netgen file [4] or an frd file (see “Element Definition Block”).
It lists the used material numbers and will generate sets for each material. The
solver ccx writes the original material names in the frd file after the related
material number (see “User Header Record” and “prnt usr”).

9.57 max

’max’ <value> [’e’|’f’|’i’|’l’] [’l’|’u’]

This keyword is used to define the upper value of the scale in the menu area
(see figure 2). The number representation can be changed between exp, float,
int or log10 for which the scale is restricted to positive values. For example

max 1100 i

will set the upper value to 1100 and the representation to integer. A third
parameter ”l” (lock) or ”u” (unlock) can be provided which locks the scale to
certain max or min values. The selection of a different dataset will not change
the scale. The specified value defines the highest value of the last box. See also
”maxr”, ”min”.

9.58 maxc

’maxc’ <value> [’e’|’f’|’i’|’l’] [’l’|’u’]

The functionality of ”maxr” but the color of the last box is ’n’ (neutral) unless
the user had changed this color by using the asgn command.

9.59 maxr

’maxr’ <value> [’e’|’f’|’i’|’l’] [’l’|’u’]

The functionality of ”max” but the specified value defines the lowest value of
the last box. See also ”maxc”

9.60 menu

’menu’ <name> <command>

This keyword is used to add a cgx command line to the menu. It will appear
in the submenu ’user’. The command is usually a ’read’ command which loads
and executes a file with cgx commands:

61

menu checkbou read cb

were ’cb’ is a value (”valu”) which stores the path to a file to check bound-
ary conditions. The file could have been used directly but using a value is
convenient since it is then possible to start the same action with a quite short
command line (”read cb”) instead of typing the full file name or using the menu.
This commands are usually stored in a “.cgx” file in the home directory to link
them to the menu during startup. Regard also the command ”subm” which
uses submenus below ’user’ for the same task.

9.61 merg

’merg’ ’n’|’e’|’p’|’l’|’c’|’s’ <set> <gtol> ’nolock’

This keyword is used to merge close points and nodes or equally defined enti-
ties. The following entities are known: Nodes n, Elements e, Points p, Lines l,
Combined Lines c, Surfaces s. For example, to merge points included in the set
point-set type

merg p point-set

Only entities included in the set are considered. The value gtol determines the
maximum distance between merged nodes and points. The parameter nolock
will force merging even if the dependent entities, like lines, are degenerated
afterwards. For example, a degenerate line will have two equal points.

9.62 mesh

’mesh’ <set> [’fast’] [’tet’ <size>|’block’|->

’lonly’|’nolength’|’noangle’|’length’|’angle’]

This keyword is used to start the meshing of the model. before using the mesh
command, the element types must be defined with the elty command. Existing
elements will not be deleted. Therefore, its possible to start cgx in the viewing
mode (-v) with a mesh alone, and then create bodies and fill them with addi-
tional elements. To delete a mesh use the command del mesh. See the command
”send” to describe areas for boundary-conditions.

In case a blocked grid for cfd-calculations should be generated, use the ad-
ditional parameter ”block”:

mesh setname block

see also the section ”Remarks Concerning Duns and Isaac”.

The mesh optimizer for structured elements is controlled with the additional

62

parameters ”nolength” and ”noangle”. These parameters switch off length and
angle optimizations of elements. The parameter ”fast” suppresses the Nurbs-
based meshing and uses the fast coons-algorithm for surface meshing.

Usually all elements are generated in a structured way. That means that no
holes in a surface or volume are permitted. The only exception are the element
types ”tr3u” and ”tr6u”. This types are generated in an unstructured way using
the mesher from [15]. In this case, holes are permitted and a surface coming
from a cad system should be meshable. These surfaces MUST reference a given
NURBS-surface or a shape to be meshable (if they are plane, a shape will be
genrated atomatically). This is usually the case if the data is derived from a
cad-system with the interface-program (vda2fbd). If NETGEN [4] is installed
and if the elements form a closed volume they can be used to generate a tet mesh:

mesh set-with-trias tet

or

mesh set-with-trias tet <element-target-size>

This is a second method to generate tets. The other one is to use “elty” to
asign tet-elements to bodies. Remark: The mesher is able to use multi thread-
ing. The number of cores are defined in cgx.h (NTHREADS) and can be changed
with “asgn” during run time. The actual number can be listed with “prnt info”

9.63 mids

’mids’ <set> [’force’|’lin’|’gen’|’rem’]

This keyword is used correct the midside node-position of higher order elements
stored in a set. It is performed automatically if a new mesh is created or if
nodes are projected to target surfaces. The correction will use a circular track
defined by the corner-nodes and the midside node. With the parameter ”lin,”
the corrected position is halfway between the corner-nodes for all inner nodes.
Except the midside nodes on the surface are not linearized but use the circular
track. The user might overrule this restriction with the “force” option. The
”gen” option will generate midside nodes for linear elements like he8 or te4.
The ”rem” option will remove midside nodes from the element formulation but
the nodes are not deleted. The nodes are stored in a new set called ”-delete”
and the user might ”zap” this set.

9.64 min

’min’ <value> [’e’|’f’|’i’|’l’] [’l’|’u’]

This keyword is used to define the lower value in the scale in the menu area (see
figure 2). The number representation can be changed between exp, float, int or

63

log10 for which the scale is restricted to positive values. For example

min 0 i

will set the lower value to 0 and the representation to integer. A third pa-
rameter ”l” (lock) or ”u” (unlock) can be provided which locks the scale to
certain max or min values. The selection of a different dataset will not change
the scale.

9.65 minc

’minc’ <value> [’e’|’f’|’i’|’l’] [’l’|’u’]

The functionality of ”minr” but the color of the first box is ’n’ (neutral) unless
the user had changed this color by using the asgn command.

9.66 minr

’minr’ <value> [’e’|’f’|’i’|’l’] [’l’|’u’]

The functionality of ”min” but the specified value defines the lowest value of
the second box.

9.67 minus

’minus’ ’n’|’e’|’p’|’l’|’s’|’b’|’S’|’L’|’sh’ <set>

This keyword is used to remove entities of a set from the screen (see also plus).
The following entities are known:

Nodes n, Elements e, Points p, Lines l, Surfaces s, Bodies b, Nurb Surfaces
S, Nurb Lines L and Shapes sh

Only the set which was used to display the entities can be used to remove
them.

9.68 mm

’mm’ <value> [’f’|’i’|’e’] [’l’|’u’]

This keyword combines the functionality of the commands max and min in one
command. The minimum value is set to -max.

64

9.69 move

’move’ <set> [’scal’ <fx> <fy> <fz> <pnt>]|

[’tra’ <dx> <dy> <dz>]|

[’rot’ [<p1> [<p2>]|[’x’|’y’|’z’]] |

[’x’|’y’|’z’] <alfa> |

[<alfa1> <ax1> <alfa2> <ax2>]]|

[’rad’ [<p1> [<p2>]|[’x’|’y’|’z’]] |[’x’|’y’|’z’] |

’p’<pnt> <dr>] | [<dr1> <ax1> <dr2> <ax2>]

[’nor’ <dr>]|

[’equ’ <trgt-set> [<tol>]]|

[’mir’ <P1> <P2>]

This keyword is used to move nodes or points which are stored in a set. Re-
lated entities will be moved as well (Warning: results are not affected by this
command, they are unchanged). For example to move a line it is necessary to
include their points in a set (see comp). Several transformations are available:

For example scal will scale the entities of the set, the scaling factors fx, fy,
fz can be chosen independently and a reference point can be used,

move part scal 2
move part scal 1 1 2

move part scal 2 P0
move part scal 1 1 2 P0

tra will move it away by the vector dx, dy, dz,

move all tra 10 20 30

rot will move it around the axis defined by the points p1 and p2 (or the axis
x,y,z) by alfa degrees,

move all rot p0 px 20.

rad will move it radially to the x-, y- or z-axis (or two points as above) or
to a single point,

move cylinder rad x 20.
move sphere rad pP0 10.

The axis for the rad or rot commands can also be specified by one point and on
main-axis (x—y—z) as shown in the following example:

move all rot P y 20.

65

The change in length or angle might be interpolated for the rad or rot cases:

move set rad x 1. 120. 2. 140.

The number 1 specifies the radial change around x at 120 length units along the
x-axis and 2 is the change at 140 length units,

nor will move nodes away in the direction of averaged normal local vector.
Associated element faces must exist. Eventually use the ”mids” command to
correct the midside node position of higher order elements,

move set nor 1.2 a

With parameter equ points or nodes will be moved to their nearest neighbour
(nodes only to nodes, points only to points) in set “trgt-set” as long as the
neighbour is not more than 0.01 units away:

move slave-set equ trgt-set 0.01

mir will mirror the set. The mirror-plane is placed normal to the direction
running from P1 to P2 and placed at P2, or defined by a point and a main-axis
(x—y—z) as shown in the following example:

move part mir P y

9.70 movi

’movi’ [loops <nr>]|[delay <sec>]|[start]|[stop]|

[frames [’auto’]|[<nr> [<epilogFile>]]]|

[make [<pic-nr> <pic-nr> [<prolog.gif>]]]|

[clean]

This keyword is used to start or stop the recording of a movie. After ”start” all
frames will be stored in single gif files until the ”stop” command is issued. Use
the option ”make” to assemble the movie from the individual files. The range
consists of the nr of the first and last picture to be used. An existing movie will
be copied in front of a range of frames if its name is given. With the option
”delay” a time-delay (in seconds) between frames can be specified. With the
option ”loops” a certain nr of loops can be chosen before the animation stops.
Without giving a certain nr the default is chosen which is infinite loops. With
the option ”clean,” all single gif-files will be erased.

Below is an example command sequence. Do not use this sequence in a file
since the start and stop commands will be executed without delay (see option
’frames’ for use in a command file). Instead of using the default value of loops
here one loop is defined:

66

movi delay 0.01

movi loops 1

movi start

(let the program run until all frames are recorded)

movi stop

movi make

(or if a certain movie should be extended by the first 500 frames:)

movi make 1 500 prolog.gif

movi clean

When using the “frames” option the recording starts and a given nr of frames will
be recorded before the recording stops atomatically. In cases were an animation
of a mode shape or a sequence of datasets should be recorded it might be useful
to use the argument ’auto’ instead of a specific nr of frames. With the ’auto’
functionality the program determines how much frames are needed to cover
one period of frames and this period is then recorded. The ’make’ and ’clean’
functionality is included in the ’auto’ mode. The ’auto’ mode requires that the
animation or the sequence is defined and started with the next command line
(see ”ds”):

anim real

movi frames auto

ds 3 eh 7

There is a second method available when successive commands after the record-
ing of a given number of frames are needed:

movi frames 90 epilogCommandFile.fbl

This command must be the last command in an eventual command file. After
90 frames the given file ’epilogCommandFile.fbl’ will be executed (the records
are interpreted as cgx commands).

Further remarks in ”How to change the format of the movie file”. See also the
menu options ”Start Recording Gif-Movie”.

9.71 msg

’msg’ ’on|off’

This keyword is used to enable or disable full printout during runtime. This is
useful for debugging purposes. The default is ”off”.

9.72 mshp

’mshp’ <name> ’l’|’s’|’b’ ->

<element-type-nr> <element-attr-nr> ->

<lockFlag> <density>|<size>

67

This keyword is used to set the mesh parameters for individual surfaces and
bodies:

mshp A001 s 8 -1 1 2.074

sets the lement type to 8 (please see ”Element Types” for a key to the ele-
ment numbers), the attribute to -1 (tr6u) and the mesh density to 2.074 (mesh
refinement). The ’1’ after the ’-1’ indicate a locked state and that all this prop-
erties can not be changed with an ”elty” command before unlocked. For sets of
surfaces or bodies the elty command must be used. The attributes are integer
values with the following meaning:

• -1: unstructured mesh tr3u (-2 for mesh with libGLu tr3g)

• 0: default

• 1: reduced integration be2r be3r he8r he20r

• 2: incompatible modes he8i

• 3: DASHPOTA be2d

• 4: plane strain (CPE) tr3e tr6e qu4e qu8e

• 5: plane stress (CPS) tr3s

• 6: axisymmetric (CAX) tr3c

• 7: fluid he8f

• 8: tet10m

• 14: reduced integration, plane strain (CPE)

• 15: reduced integration, plane stress (CPS)

• 16: reduced integration, axisymmetric (CAX)

9.73 neigh

’neigh’ <set> <tol> [’abq’|’ans’|’nas’] ->

[’con’ [’tie’]|[[<stiffness>] [<mue>]]]|

[’equ’ [<dofs(’t’|’1-6’)..> ’c’|’u’..]|

[’tie’ [’yes’]]|

[’nsc’ [’tie’]|[[<stiffness>] [<mue>]]]

This keyword is used to find neighboring element faces (and nodes) which can be
used in a contact formulation. So far *TIE, *CONTACT PAIR, or *EQUATION
formulations for abaqus and ccx are availabe but only equations for ansys and
nastran. It will search for disjunct meshes and generates sets storing the faces of
this meshes with setnames starting with ’+CF’. The neighboring element faces

68

are stored in additional sets which reference this meshes. The name of such a set
consist of three parts. The first part of the name is just one character indicating
if it is to be used at the dependent ’D’ or independent ’I’ side. The second
part references the set containing the dependent faces, the third references the
neighbor (the leading ’+’ of the basic sets are neglected). For example:

DCF2_CF4

includes the faces and nodes of ’+CF2’ which are close to ’+CF4’ were ’+CF2’
should be the dependent side. All sets for which no partner could be found are
stored in set ’+UNCON’.

The cgx writes equations connecting both sets when using the optional pa-
rameter ’equ’:

neigh all 0.1 abq equ

But the recommended method is using ’tie’, ’con’ or ’nsc’ which write the ccx
command *TIE;

neigh all 0.1 abq tie

or *CONTACT:

neigh all 0.1 abq con 1e6 0.2

In this example the value 1e6 is used as normal contact stiffness (1/100 of
that will be used as tangential stiffnes) and 0.2 as friction coefficient. The
parameter ’con’ defines surface to surface contact and ’nsc’ node to surface con-
tact. If the user does not provide values for stiffness and mue the cgx does not
write *SURFACE INTERACTION, *SURFACE BEHAVIOR and *FRICTION
commands. If instead of a stiffness ’tie’ is given then a tied contact is formulated:

neigh all 0.1 abq con tie

Since ccx regards no gap criterion to exclude faces which are not in contact the
surface sets must be defined more restricted for the ’con tie’ option. Because of
that some close faces might not be included in the contact sets. REMARK: Op-
tion TIED with node to surface contact does not work so far, so an alternative
method is recomended:

Instead of PRESSURE-OVERCLOSURE=TIED the cgx writes PRESSURE-
OVERCLOSURE=LINEAR with a normal and tangential stiffness of 1e7. To
prevent a sliding contact mue is set to 1e30. The user should run his calculation
in the following way:

** generate springs

*STEP

*STATIC

69

*BOUNDARY

Nall,1,3

*END STEP

** use the springs w/o updating them

** either:

***STEP,NLGEOM,perturbation

** or:

*STEP,perturbation

** either:

*STATIC

** or:

*FREQUENCY

*BOUNDARY,OP=NEW

).
The *TIE commands use the parameter ADJUST=NO for robustness (might

be overruled when using as a last parameter ’yes’):

neigh all 0.1 tie yes

The user should check his calculation for unrealistic high stresses at the junctions
and eventually change the formulation on such locations to ADJUST=YES. If
the calculation does not run anymore he might modify the mesh locally or use
the ’equ’ option for that location.

The necessary ccx contact commands and the set definitions are written
when using the parameter ’tie’, ’nsc’ or ’con’. The single files storing the sets
might be bundeled into one file with:

cat CF* >| all.inp

This file and the file with the *TIE or *CONTACT formulations are then ref-
erenced in the ccx input file with *INCLUDE commands:

*INCLUDE, input=all.inp

*INCLUDE, input=neigh.con

When using the ’equ’ option just one file has to be generated and used in ccx:

*INCLUDE, input=all.inp

It should be mentioned that the option ’equ’ uses actually the same func-
tionality as the command “send” with parameter ’areampc’. In consequence all
the functionality of that command is usable. A closer description of the avail-
able options can be found in that section. For example the last parameter ’u’
prevents the adaption of the position of the dependent nodes.

The command writes the setnames of the dependent and independent face
pairs to the ”stack”.

70

9.74 node

’node’ <nr|!> [<x> <y> <z> [’0’|’1’]]|

[’v’ <value> [<value> ..]]|

[’vs’ <value>]

This keyword is used to define or redefine a node. For example

node 23580 10. 0. 1.

defines a node with the number 23580 at the position x=10, y=0, z=1. With a
trailing ’0’ the update of related entities is skipped:

node 23580 10. 0. 1. 0

This is useful to speed up the execution when a long list of nodes will be defined.
Just the last node needs the update which is executed with a trailing ’1’. But
that is the default anyway and can be omitted.

If the an automatically generated name is desired, then type ”!” instead of
a name.

The values of the selected (current) dataset of a given node can be manipu-
lated by using the option ’v’:

node 23580 v 1.1 2.1 3.3

redefine the first three entities to the above values of the selected dataset. The
maximum number of entities is determined by the definition of the dataset. See
also ”ds” on how to select or generate a new dataset or on how to manipulate
entities of the selected dataset.

The value of the selected (current) entity and dataset of a given node can
be manipulated by using the option ’vs’:

node 23580 vs 1.1

9.75 norm

’norm’ <set>

This keyword is used to evaluate the normal direction of nodes stored in the
given set. Of course the node must be referenced by faces. The command writes
the normal direction of nodes to the konsole. The user might store this values
on the stack for further use (see also stack and valu).

9.76 nurl

’nurl’ <name(char9)>|’!’ [’DEFINE’ [’COMPACT’] ->

71

<pstart> <pend> <deg> <npnt> <nknt> <div>]|

[’CONTROL’ <index> [<pnt>|<x y z>] <weight>]|

[’KNOT’ <index> <value>]|

[’END’]

This keyword is used to define a nurbs line. So far, this command is only used
to read a nurbs-line definition. Nurbs lines are converted automatically into
a spline. Nurbs lines can be displayed but not saved. There are two possible
ways of definition. Either by using predefined point-names or by specifying the
coordinates explicitly. When the coordinates are defined, the parameter ”COM-
PACT” must be used as shown above. When the point names are used, then
”COMPACT” must be omitted. CAD-interfaces might use this functionality.

9.77 nurs

’nurs’ [<name(char9)>|’!’ [’DEFINE’ [’COMPACT’] ->

<u.deg> <v.deg> <u.npnt> <v.npnt> <u.nknt> <v.nknt>]|

[’CONTROL’ <u.index> <v.index> [<pnt>|<x y z>] ->

<weight>]|

[’KNOT’ <U>|<V> <index> <value>]|

[’END’]] |

[<!> <setname(containing surfaces)>]

This keyword is used to define a nurbs shape. Surfaces might use nurbs to define
the interior geometry. There are two possible ways of definition. The first using
predefined point names and the second by specifying the coordinates explicitly.
When the coordinates are defined, then the parameter ”COMPACT” must be
used as shown above but when point names are used, then ”COMPACT” must
be omitted. CAD-interfaces might use this functionality.

REMARK: The knot-vector has to have a multiplicity of “degree+1”.

There is also a small nurbs-building capability in cgx. It is possible to use
existing surfaces (with 4 edges) which do not already reference a given nurbs or
shape. The new nurbs will follow the Coons-algorithm but can be modified by
moving the control points. NOTE: The number of control points is controlled
by the divisions of the lines defining the surface edges. The surfaces must be
stored in a set. For example,

nurs ! surfaceSet

will define nurbs for all surfaces stored in the set surfaceSet. This nurbs can be
used to define the interiour of other surfaces. This is necessary if “tr3u” ele-
ments (unstructured triangles) should be used and if the surface is not related
to a given shape. Note: “qsur” offers another option to create nurbs related sur-
faces by associating existing surfaces to an overlapping existing NURBS. The
interiour of the surface is then defined by the NURBS.

72

Remark: Internally nurbs are always linked by a shape to a surface defini-
tion. Such a shape will be automatically generated when a nurbs is finished by
the “END” parameter using the same name as the nurbs. This shapes will not
be written to a file but using the prnt command will list them:

shpe N001 NURS N001

9.78 ori

’ori’ <set>

This keyword is used to trigger the orientation of the entities. This is done
automatically and it should never be necessary to use it manually.

9.79 plot

’plot’ [’n’|’e’|’f’|’p’|’l’|’s’|’b’|’S’|’L’|’sh’|’si’]&->

[’a’|’b’|’c’|’d’|’n’|’p’|’q’|’t’|’v’] ->

[<set>|<*chars*>] [’b’|’g’|’k’|’m’|’n’|’r’|’t’|’w’|’y’] [<width>->

|<transparency>]

This keyword is used to display the entities of a set. Entities already visible will
be erased. The following types of entities are known:

Nodes n, Elements e, Faces f, Points p, Lines l, Surfaces s, Bodies b, Nurbs
Surfaces S, Nurbs Lines L, Shapes sh and the shaded (illuminated) surfaces si

The entities can be displayed in the following colors:

White w, Black k, Red r, Green g, Blue b, Yellow y, Magenta m, Neutral
’n’ (metallic grey) and turquois t

To display the entities with attributes, use the type in combination with an
attribute (second letter). If no set is specified, the entities of the given type of
all sets are shown:

plot e

shows the elements of all sets in the available colors (except set ’all’). The
command

plot e *

does the same. In general wildcards(*) are supported:

plot e E*

73

will display all elements of all sets staring with an ’E’.
To get a list of the visible sets and the used colors use “prnt ve”.
Other examples are:

plot la all

will display all lines with their names. The attribute d works only for lines,

plot ld all

will display all lines with their division and bias (see bia). The division is
given by the numbers (1-99) following the # sign and the bias by the leading
digits. If the bias uses more than one digit in front of the division, the number
has to be divided by a factor of ten to get the bias (101#30 means a bias of 10.1
and a div of 30).

plot ln all

shows potential node locations. The attribute p works only for lines. In this
case the lines with its end-points are drawn:

plot lp all

This is useful to detect the begin and end of all lines. If end-points are deleted,
the line is also deleted. Therefore special care with end-points is necessary. The
key c combines the line parameters d, p, n:

plot lc all

The lines are drawn with their end-points, potential node positions and di-
visions. Shaded surfaces

plot si all

can only be displayed if the interiour was previously calculated, which is done
with the command “rep” or “mesh”. The attribute t applies only to nodes and
will display only the ones which have attached texts:

plot nt all

will display only the nodes which have attached texts out of the set ’all’. They
are created with ”qadd”, ”qenq” or ”qtxt”. The attribute “width” determines
the number of pixels used for the thickness of the entity (points, nodes, lines):

plot l all 4

74

will display all lines with a width of 4 pixels. This works also for 2D faces
and beams. The attribute n works for nodes only:

plot nn set1

will display the nodes in set set1 with their numerical values. The attribute
v works for nodes, faces ane elements. This attribute is used to display results
with colors representing their values:

plot nv set1

plot fv set1

plot ev set1

Actually this is what happens automatically if the user selects an ”Entity”
from ”Datasets” in the ”menu”. The faces can be displayed in a transparent
manner with the attribute b:

plot fb set1 t 33

will display the faces in turquois color with a transparency of 33%.

plot fvb set1 33

will display the faces with their colored values with a transparency of 33%. A
default transparency is used if a number is not given.

The attribute q works only for elements. With this attribute, only elements
which do not pass the element-quality check are displayed:

plot eq all

The threshold for the element-quality is defined with ”eqal”.

To plot additional entities, see plus.

9.80 plus

’plus’ [’n’|’e’|’f’|’p’|’l’|’s’|’b’|’S’|’L’|’sh’|’si’]& ->

[’a’|’b’|’d’|’n’|’p’|’q’|’t’|’v’] ->

[<set>] [’b’|’g’|’k’|’m’|’n’|’r’|’t’|’w’|’y’] [<width>->

|<transparency>]

This keyword is used to display the entities of an additional set after a plot

75

command was used (see also minus). Further details are explained in section
plot.

9.81 pnt

’pnt’ <name(char<9)>|’!’ [<x> <y> <z>]|

[<line> <ratio> <times>]|

[<P1> <P2> <ratio> <times>]|

[<setname(containing nodes)>]

This keyword is used to define or redefine a point. There are four possibilities
to define a point. To define a point just with coordinates:

pnt p1 11 1.2 34

or,

pnt ! 11 1.2 34

where the name is chosen automatically. It is also possible to create points
on a line or in the direction from P1 to P2 by defining a spacing (ratio) and
number-of-points:

pnt ! L1 0.25 3

or

pnt ! P1 P2 0.25 3

will create 3 new points at the positions 0.25, 0.5 and 0.75 times the length
of the line or the distance from P1 to P2, and it is also possible to create points
on the positions of existing nodes. The command

pnt ! set

will create new points on the positions of the nodes included in the specified
set. Usually when points are defined interactive the command qpnt is used.

9.82 prnt

’prnt’ [’se’|’sq’ <RETURN|set|*chars*> [’range’]]|

[’n’|’e’ <set|*chars*> ’range’]|

[’n’|’e’|’f’|’p’|’l’|’s’|’b’|’L’|’S’|’v’ <entity>]|

[’col’]|

[’amp’ <RETURN|amplitude|*chars*>]|

[’mat’ <RETURN|material|*chars*>]|

76

[’par’ <RETURN|parameter>]|

[’eq’ <set>]|

[’st’ [’si’]]|

[’in’]|

[’ve’]|

[’usr’]

This keyword is used to print entity-definitions. The following entities are
known:

Nodes n, Elements e, Faces f, Points p, Lines l, Surfaces s, Bodies b, Nurb
Lines L, Nurb Surfaces S, Values v, Sets se and Sequences sq

To see all known sets, type:

prnt se

Or type

prnt sq

to see all known sequential sets (sequences: Sets which maintain the history
of entity selection). Or type

prnt ve

to list all sets used to show the visible entities.
Wildcards (*) can be used to search for setnames of a certain expression. In

this case all sets matching the expression will be listed:

prnt se N*

lists all sets starting with ’N’. To see the contents of a specific set, type

prnt se setName

Please see ”mshp” for details about etyp, attr and ”elty” about lock. In case the
“stack” was activated the value and the coordinates of stored nodes are written
to the stack. The content of the stack can be listed with:

prnt st

The index and the value are written. The value with the highest index is
addressed next. The number of stack entries (the size) can be enquired (and
written to the stack) with:

77

prnt st si

A model summary (info) is listed with:

prnt in

which will list the number of mesh- and geometric entities. In addition it lists
the hidden entity ’edge’ which are the free element edges. This number has to be
zero in case of a closed surface triangulation which is required for tet-meshing.

To print the definition of a line, type:

prnt l lineName

An eventually assigned alias name for a given entity can be enquired with a
leading question mark:

prnt l ?lineName

For elements and nodes is an additional parameter “range” availabe. In this
case the range of node- or element-numbers will be displayed (max and min nr)
and holes in the numbering are detected:

prnt n setname range

If an ccx- or abaqus-input-file was read then it is also possible to print the
amplitudes (*AMPLITUDE in ccx) or the material-propperties (*MATERIAL
in ccx), wildcards (*) can be used:

prnt amp amplitude-name

prnt mat material-name

If an ccx result file was read then the user headers (meta data)

prnt usr

and parameters of each dataset can be listed and written to the stack with either

prnt par

to list all parameters of the active dataset or a single one like for example

prnt par STEP

can be listed and written to the stack (see stack). The available colors are
listed with

78

prnt col

See “col” on how to define or redefine colors.
The element quality is checked by using

prnt eq setName

The failed elements are stored in set “-NJBY”. See “eqal” on how to set the
criterions.

Several other but not all parameters of this command writes to the ”stack”.

9.83 proj

’proj’ <set> <target-set>|<shpe> ->

[’tra’ <dx> <dy> <dz> <offset> [<tol>]]|

[’rot’ <p1> <p2> <offset> [<tol>]]|

[’rot’ ’x’|’y’|’z’ <offset> [<tol>]]|

[’rad’ <p1> <p2> <offset> [<tol>]]|

[’rad’ ’x’|’y’|’z’ <offset> [<tol>]]|

[’nor’ <offset> [<tol>]]

This keyword is used to project points (with all related geometry) or nodes
onto a set containing nurbs, shapes, surfaces or element-faces. Alternatively the
name of a shape can be specified as the target.

Several transformations are available. For example tra will move points in
the direction of the vector dx, dy, dz onto elements or surfaces included in set2.
Alternatively an offset could be specified as well,

proj set1 set2 tra 0. 0.5 0.7

rot will move points around the axis defined by the points p1 and p2 or around
the x,y,z axis onto elements or surfaces included in set2,

proj set1 set2 rot p0 px

rad will move points radial to the axis defined by the points p1 and p2 or
radial to the x-, y- or z-axis onto elements or surfaces included in set2. Alterna-
tively a set of lines could be used instead of surfaces as the target-set. Then the
geometry will be moved onto an imaginary rotational surface defined by these
lines,

proj set1 set2 rad x

nor will move points in a direction normal to the target surface onto surfaces
included in set2. An offset might be specified:

79

proj set1 set2 nor 0.7

If a shape was given instead of a target-set then an offset can not be used:

proj set1 ShapeName nor

If a point does not hit any surface from the target-set, then it will not be
moved. A tolerance can be specified for the projections. No projection takes
place if the target surface is farther away as this value defines:

proj set1 set2 nor 0.7 10.

Check for set ’-NOPRJ’. If it exists it will store the failed nodes or points.

9.84 qadd

’qadd’ <set|seq> [’t’<value>] RETURN ->

<’w’|’a’|’i’|’r’|’n’|’e’|’f’|’p’|’l’| ->

’s’|’b’|’S’|’L’|’h’|’m’|’q’|’s’|’t’|’u’>

This keyword is used to add entities to a set. See also seta. But a set will not
keep the sequence in which the entities were selected. Use seqa or the command
“qseq” if the order of the selected entities has to be kept.

After an entitiy was selected you get certain informations about the entity.
If the node which belongs to the maximum or minimum value in a certain area
has to be stored in a set you might use the same key-strokes as described for
the command ”qenq”.

To catch more than one entity with one stroke, type ”a” (all) at first. Then
create a rectangular picking area by pressing two times the ”r” key. Both strokes
define opposite corners of the selection-rectangle. To catch only the entity which
is closest to the user type ”i” before.

Then move the mouse pointer over the entity(s) and press one of the following
keys, for Nodes n, Elements e, Faces f, Points p, Lines l, Surfaces s, Bodies b,
Nurb Surfaces S, node attached texts t and for Nurb Lines L.

If faces f of a certain area have to be selected, the user might specify a
tolerance-value which restricts the deviation of the normal vectors of faces from
the selected face. As long as the deviation is below the specified value (in de-
grees) all adjacent faces will be selected in a loop:

qadd areaset t25

Press ”q” to quit the command.

80

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.85 qali

’qali’ RETURN ’w’|’p’|’n’|’q’

This keyword is used to align a plane defined by three points or nodes with the
screen (working plane). This is useful if a point or a node should be moved
manually along a defined plane (see qpnt). To define the plane move the mouse
pointer over the first entity and press ”n” if its a node or a ”p” if its a point. Then
define the next two entities in the same way. Press ”q” to quit the command.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.86 qbia

’qbia’ RETURN ’w’|’a’|’i’|’c’|’1’-’9’|’ 10’-’ 99’|’q’

This keyword is used to change the bias of a line. The bias defines a coarsening
or refinement of the mesh along a line. The number defines the ratio of the
length of the first element to the length of the last element at a given line. It
works by pressing a number between 1 and 9 when the mouse pointer is at the
position of a line. To define numbers between 10 and 99 press the space bar
when the mouse pointer is at the position of a line and then the number (two
times the space bar for 100 to 999). To select more than one line with one
stroke, type ”a” before and create a rectangular picking area by pressing two
times the ”r” key. Both strokes define opposite corners of the rectangle. To
select only one line type ”i” before. Press ”c” to change the direction of the
bias. Press ”q” to quit the command (see alse bia). Consider to split a line if
you need a bias in both direction (see qspl).

9.87 qbod

’qbod’ <name>(optional) RETURN ’w’|’b’|’a’|’i’|’r’|’s’|’g’|

’q’|’u’

This keyword is used to create a body (see also gbod and body). The user
might specify a name in the command-line or by picking an existing body with
the key ”b”. Otherwise the program chooses an unused name. It is possible to
create the body out of five to seven surfaces which are needed to define a body
or just of two opposite surfaces, but then these two surfaces must be connected
on their corner points by lines. To be more precise only single lines or existing
combined lines (lcmb) will be detected. If a combined line would be necessary
but does not exist then the user should define a surface using this lines which

81

will create the necessary combined-line. Other missed surfaces will be created
automatically. To catch more than one surface with one stroke, type ”a” before
and create a rectangular picking area by pressing two times the ”r” key. Both
strokes define opposite corners of the rectangle. Type ”s” to select surfaces. To
catch surfaces individually type ”i” before (its also the default). After selecting
exactly six or two opposite surfaces press ”g” to generate the body. Press ”q”
to quit the command or ”u” to undo the last action.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.88 qcnt

’qcnt’ RETURN ’w’|’n’|’p’

This keyword is used to define a new center-point or -node by pressing ”n” or
”p” when the mouse pointer is at the position of a node or a point.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.89 qcut

’qcut’ RETURN ’w’|’q’|’n’|’p’|’u’|’v’|’x’|’y’|’z’|’s’

This keyword is used to define a cutting plane trough elements to visualize
internal results (see figure 5). New elements are generated and stored in the
set “-qcut” for this purpose. The plane is defined either by picking three nodes
(select with key “n”) or points (select with key “p”), or by just one node plus
either a successive “v”-keystroke in case a dataset-entity of a vector was already
selected or just an “x”-,”y”- or “z”-keystroke without pressing ’n’ before. The
cutting plane is then determined normal to the vector (displacements, worstPS
..) or the given x,y or z direction. Be aware of the key “u” (undo) to return
to the un-cutted structure. See also ”cut” for the command-line function. The
elements generated by successive qcut or cut add up until they are deleted.

To suppress or enable the immediate ploting of the cut press “s” (switch
ploting on/off) before you create the cut. This is necessary if more than one cut
should be shown together. So first press key “s” then create all the cuts except
the last. Then “s” again and create the last cut.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.90 qdel

’qdel’ RETURN ’w’|’a’|’i’|’r’|’p’|’l’|’s’|’b’|’S’|’L’|’h’|’q’

82

Figure 5: qcut: A section through a model defined by three nodes together with
a transparent view of the outer skin

This keyword is used to delete entities (see also del). Higher entities (depending
ones) will be deleted to. To delete more than one entity with one stroke, type
”a” before and create a rectangular picking area by pressing two times the ”r”
key. Both strokes define opposite corners of the rectangle. To delete only one
entity type ”i” before. Press ”q” to quit the command.

Surfaces will not be deleted when the user deletes lines which define complete
holes in existing surfaces. But it is necessary that all lines of a certain hole are
deleted at once. If only a partial hole is deleted, the surface is deleted as well.
It is proposed to use zap to delete the affected lines.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.91 qdis

’qdis’ RETURN ’c’|’f’|’g’|’m’|’n’|’p’|’q’|’s’|’w’

83

This keyword is used to measure distances between nodes or points. Move the
mouse pointer over one entity and press the following key, for a node ’n’, for a
point ’p’ or for a center point ’c’ (has to be the second selection). If the key
’c’ was pressed then the distance between the two nodes or points are given in
cylindrical coordinates. Here lcir is the length of the arc, da the angle, dr is
r2-r1. If no center point was chosen then the distance and its xyz components
are given in the Cartesian system. But in addition the cylindrical distances
around the origin and around the xyz-axis are also given.

In addition the normal distance of a node or point to a plane defined by three
nodes or points can be measured. The point or node in question is selected with
key ’n’ or ’p’ and the nodes or points which define the plane are selected with
’m’ (mesh nodes) or ’g’ (geometry points). Instead of defining a plane the user
may select a single surface with ’s’ or a single element face with ’f’ (will be
extended by adjacent faces). This selection has to take place before the node or
point is selected.

Press ”q” to quit the command.

• dist: global distance

• dx, dy,dz: distance in the three Cartesian directions

• da: global angle

• dax, day, daz: angle around x, y, z

• dr: global radius difference

• drx, dry, drz: radius difference around x, y, z

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.92 qdiv

’qdiv’ RETURN ’w’|’a’|’i’|’1’-’9’|’ 10’-’ 99’|’q’

This keyword is used to change the division of a line by pressing a number
between 1 and 9 when the mouse pointer is at the position of a line (see also
div). To define numbers between 10 and 99 press the space bar when the mouse
pointer is at the position of a line and then the number (two times the space bar
for 100 to 999). To select more than one line with one stroke, type ”a” before
and create a rectangular picking area by pressing two times the ”r” key. Both
strokes define opposite corners of the rectangle. To select only one line type ”i”
before. Press ”q” to quit the command. General rules are described in ”div”.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

84

9.93 qenq

’qenq’ RETURN ’w’|’a’|’i’|’r’|’n’|’e’|’f’|’p’|’l’|’s’|->

’b’|’S’|’L’|’h’|’m’|’u’|’v’|’t’|’q’

This keyword is used to gain information about entities. It is especially useful
to get the values on particular nodes.

If the maximum or minimum value in a certain area has to be searched
type first “m” to go in the max/min mode and create a rectangular picking
area by pressing two times the ”r” key. Both strokes define opposite corners of
the selection-rectangle. Then the key “h” (high) to search the node with the
maximum value. The minimum is searched with “l” (low). The search-result is
then shown in the konsole and also attached to the node. With the “u” key the
last search result can be deleted (“undo”). The ’t’-key changes into the “qtxt”-
mode. The ”qtxt” functionality is now available which allows to manipulate
the node-attached-string and its position on the screen. Use ”qadd” instead of
“qenq” if you need to save the node in a set for further use.

To catch more than one entity with one stroke, type ”a” (all) before and
create a rectangular picking area by pressing two times the ”r” key. Both
strokes define opposite corners of the rectangle. To catch only the entity which
is closest to the user type ”i” before.

Then move the mouse pointer over the entity(s) and press one of the following
keys, for Nodes n, Elements e, Faces f, Points p, Lines l, Surfaces s, Bodies b,
Nurb Surfaces S and for Nurb Lines L.

The position of nodes or points are given in Cartesian and cylindrical co-
ordinates (see figure 6, axyz are the 3 angles around x,y and z, rxyz are the 3
radii around x, y and z). In a second row the sets to which the picked entity
belongs are listed.

Press ”q” to quit the command.
It is also possible to measure distances between two pixels on the screen. Just

press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.94 qfil

’qfil’ <radius> RETURN ’w’|’l’|’q’

The command creates a fillet line (a radius) between two lines who intersect.
After the command-name the value for the fillet-radius has to be specified. Then
for each pair of selected lines a fillet of this value will be created. Select lines
with the ”l”-key. Press ”q” to quit the command. Currently it works only for
straight lines. A curved line can be split and the part which should be used for
the fillet can be transformed to a straight form with the ”qlin” command (”s”
and ”x” key-strokes). Figure 7 shows on the right side the initial situation and
on the left side the created fillet. The command has also shifted point P002 to
the left. Always the end-point of the first selected line closest to the intersection
is moved. The second line gets a new end-point.

85

Figure 6: qenq: Definition of the cylindrical system

9.95 qflp

’qflp’ RETURN ’w’|’e’|’s’|’a’|’i’|’q’

This keyword is used to invert the outer- and inner side (the orientation) of
shell-elements and surfaces. The orientation of shell-elements or surfaces can be
seen by the interior color. The outer face reflects light but the face is dark-grey
if it is the back-side. If ”Toggle Illuminate Backface” was selected before then
both sides are illuminated. To flip the orientation of a surface and all related
shell-elements select the illuminated surface (see “rep” how to do that) with
the ”s” key. To see the effect on the elements immediatelly they must have
been displayed with the ”plus” command as well. If only elements are in the
database flip them with the ”e” key. The ”a” key has a different meaning than
usually. If pressed before a selection then a so called auto mode is activated.
In this case all related surfaces (and embedded elements) are oriented in the
same way as the selected one. It works only in situations were only two surfaces
share a common edge! This is the case for volumes without inner surfaces or
a 2D model. In case of a volume all surface normals will point either inwards
or outwards, depending on the orientation of the selected surface. Press ”q” to
quit the command.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated

86

Figure 7: qfil: Based on two intersecting lines a fillet is created

in the scale of the displayed geometry.

9.96 qint

’qint’ RETURN ’w’|’l’|’q’

This keyword is used to extend two lines to their intersecting location. The
end-points of the two lines are moved to the intersecting location but they are
not merged. Use the ”merg” command to merge duplicate points. Since only
straight lines and splines are supported it is necessary to convert other line types
into splines before this command can be used (see ”qseq”).

Select lines with the ”l” key. Press ”q” to quit the command.

9.97 qlin

’qlin’ <name>(optional) RETURN ’w’|’b’|’c’|’e’|’g’|’l’|’m’|’p’|->

’q’|’s’|’t’|’u’|’x’

87

This keyword is used to create a sequence of lines (or just one, see also line).
The user might specify a name in the command-line or by picking an existing
line with the key ”l”. In this case an existing line might be redefined without
destroying related geometries.

To start a sequence of lines move the mouse pointer over a point and press
the key ”b” (begin).

To define just a straight line go to the end point and press ”g” (generate).
This point is also the starting point for the next line. So no ”b” is necessary for
the next line.

If the line is a sequential line (spline) then the points of the sequence must
be defined with the key ”t” in the correct order, but the last point must be
selected with the key ”g”.

If the line is an arc then the center point must be selected with the ”c” key
or one point on the line between the end-points must be selected with the ”m”
key, but the last point must be selected with the key ”g”.

In case you need to split a line during the process, you can do that by
pressing the ”s” key.

When you want to modify the length then pick an existing line with the key
”l” and then the endpoint you want to move with the key ”p”. The displacement
is requested and the point is moved in the direction of the line by the specified
displacement.

The ”x” key will transform the line into a straight line.
One quite useful function for cad-based surfaces is triggered by the ”e”-

key (exchange). This allows to modify an existing surface (gsur). With that
command a line or a line sequence in a lcmb can be exchanged by the previous
selected (“l” key) or generated line. For example one edge of an already existing
surface uses a lcmb but the user wants to replace it by a spline (line) then the
user defines or selects the new spline and then moves the mouse in an area were
one of the old lines (the new one might be present as well) is located and presses
the ”e” key. The definition of the lcmb will be changed without destroying the
surface-definition. Alternatively the existing lines can be combined with the
”qseq” command into a single spline. This command will delete the original
lines.

Press ”q” to quit the command or ”u” to delete the last created line.
It is also possible to measure distances between two pixels on the screen. Just

press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.98 qmov

’qmov’ <set> RETURN ’w’|’n’|’p’|’m’|’u’

This keyword is used to move a set of entities (see also move). To move a
set move the mouse pointer to the desired reference node and press ”n” or a
reference point with “p”. Then go to the desired position, either a second node,

88

a point or a window location and press either “n” (node), “p” (point) or “m”
(move). Press ”q” to quit the command or ”u” to undo the last action.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.99 qmsh

’qmsh’ RETURN ’i’|’a’|’e’|’f’|’v’|’n’|’l’|’c’|’s’|’m’|’d’|’h’|->

’t’|’x’|’q’

A very useful command to optimize surface meshes as a basis for tet-meshes.
Line divisions can be changed by selecting one or more lines with the “l” key
and then a number as with “qdiv”. The mesh will be updated automatically.

Based on identified lines “l” or surfaces “s” meshes can be coarsened ’t’,
refined ’h’, deleted “d” and generated “m”. Surfaces can be combined “c” to
get rid of very small ones and splitted ’b’.

To change the mesh density along a line:

• Identify a line or several lines with key “l”. The related surfaces are
selected.

• The line division is changed by pressing the key with the desired num-
ber. This function of qmsh works like the “qdiv” command. The related
surfaces are automatically re-meshed.

• The line bias is changed if first the key “b” is pressed and then the key
with the desired number or the key “c” to inverse the direction. This
function of qmsh works like the “qbia” command. The related surfaces
are automatically re-meshed.

Example for a surface combination:

• Identify a line with key “l”. The related surfaces are selected.

• Or identify two adjacent surfaces with key “s” or by selecting two single
elements “e” one for each surface. They must use the same lines at the
junction.

• To combine the two selected surfaces press key “c” (Attention: The sur-
face with the longer perimeter must reference a shape (a nurbs)). In the
moment an automatic adaption of the embedded shape or nurbs is not
done. The shape of the bigger surface is just used for the combined sur-
face. It might be necessary to use a mapped mesh for the new surface if
the embedded shape is too small (use tr6 instead of tr6u, switching is
done with key “x”).

A surface can be splitted by a crossing line:

89

• First create the desired splitting line, for example with “qlin”.

• Type “qmsh” and identify the line with key “l”.

• Identify the surface with key “s” or by selecting a single element “e”.

• Press key “b” to break (split) the surface in two. The previously selected
line will be converted to a spline with as much control points as the line
division. Then the line-points are projeted to the surface.

To change the mesh density in a selected surface:

• Select one or more surfaces with key “s” or by selecting lines “l” or by
selecting a single element “e”.

• Press “h” (higher) to increase the mesh density or “t” (thinner) to de-
crease.

•

To change the element type from unstructured to structured or vice versa:

• Select one surfaces with key “x”. Be aware that only certain line division
combinations will work for structured meshes. Initially the element type
tr6 will be used if no element type was assigned to the selected surface.

This keyword can be used to manually define elements. The key “n” selects
nodes and the key “f” or “v” generate a surface or volume element based on the
node-selection.

To catch more than one entity with one stroke, type ”a” (all) at first. Then
create a rectangular picking area by pressing two times the ”r” key. Both strokes
define opposite corners of the selection-rectangle. To catch only the entity which
is closest to the user type ”i” before.

9.100 qnor

’qnor’ RETURN ’w’|’p’

A new line normal to a plane defined by three points and a length is created.
It starts at the last point.

9.101 qpnt

’qpnt’ <name>(optional)RETURN ’w’|’p’|’g’|’m’|’n’|’s’|’S’|’u’

This keyword is used to create or move points (see also pnt). The user might
specify a name in the command-line if a certain name should be used. To
create a point move the mouse pointer to the desired location and press the
key ”g” (generate) or over an existing node and press ”n” (uses then the node-
coordinates). After a point was selected with ”p” it can be moved in different

90

ways: Either in the screen-plane, for this go to the desired position and press
”m” (move, see qali or the section Orientation how to rotate the model into a
certain position). Or the point can be moved to the position of a second point,
for this go to the second point which coordinates should be used and press ”p”
again. If the coordinates of a node should be used press ”n” instead. Also a
normal projection to a nurbs related surface (from cad-systems) is feasible by
choosing the target-surface with the ”s” key or a NURBS-surface with the ”S”
key either before or after the point was marked. Press ”q” to quit the command
or ”u” to undo the last action.

If you picked the wrong point (the one which should be moved), just pick
the same again and pick then the correct one.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.102 qnod

’qnod’ RETURN ’w’|’p’|’m’|’u’

This keyword is used to move nodes (see also node). To move a node move the
mouse pointer to the desired node and press ”p” (pick) then go to the desired
position and press ”m” (move). See qali or the section Orientation how to rotate
the model into a certain position. Press ”q” to quit the command or ”u” to
undo the last action.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.103 qrem

’qrem’ <set> RETURN ’w’|’a’|’i’|’r’|’n’|’e’|’f’|’p’|’l’|’s’|->

’b’|’q’

This keyword is used to erase entities from a set (see also setr). To remove
entities move the mouse pointer over the entity and press the following keys,
for Nodes n, Elements e, Faces f, Points p, Lines l, Surfaces s, Bodies b, Nurb
Surfaces S and for Nurb Lines L. To catch more than one entity with one stroke
type ”a” before and create a rectangular picking area by pressing two times the
”r” key. Both strokes define opposite corners of the rectangle. To catch only
one entity type ”i” before. Press ”q” to quit the command.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.104 qseq

’qseq’ [[<set>] RETURN ’p’]|[RETURN [<nr>|’l’|’g’]]

91

This keyword is used to define a sequence of nodes or points or to convert one
or more lines into a sequential line (spline). A sequence is nothing else than a
set which keeps the selection-order of the entities:

qseq nodeset

will store all selected nodes (selected with the ’n’ key) in the order in which
they were selected. This set might be used for a subsequent ”graph” command.
Point sequences are used to define splines. Sequences can be shown with the
“prnt sq” command. Node sequences can be written to a file and read again
with the commands “send seqname fbd” and “read seqname.fbd”.

To change one or more lines into a sequential line type

qseq

without a setname. Then either one existing line has to be selected with a
numerical keystroke (or the space-bar followed by two numbers) or several lines
with ’l’ keystrokes. In both cases the selection has to be finished by a ’g’
keystroke. New points will be created on the selected lines which in turn are
used to redefine the selected lines as a sequence line. If just one line was selected
then as much points are generated as defined with the nummerical keystroke.
If more than one line was selected with the ’l’ key then the combined line divi-
sions minus one define the number of new points. This command will replace
and delete the original lines.

9.105 qshp

’qshp’ RETURN ’w’|’n’|’p’|’g’|’h’|’s’|’S’|’c’|’q’

This keyword is used to define a plane shape. A plane shape needs 3 points (or
nodes, points at their location will be generated and used) for its definition. The
points are selected with the ’p’ (nodes ’n’) key. After the points are selected it
will be generated by a ’g’ keystroke. The shape can be assigned to a surface by
selecting first either a shape ’h’ or a nurbs ’S’ and then the surface with the ’s’
key. The shape will then define the interiour of this surface. The selected shape
or nurbs stay selected until cleared with ’c’. See also “shpe” for the keyboard
controlled definition of shapes.

It can also be used for projection purposes (see ”proj”) or splitting (see
”split”).

9.106 qspl

’qspl’ RETURN ’w’|’s’|’q’

This keyword is used to split one or more lines at a certain position. A point is
created at the splitting position, the original line is deleted and two new lines

92

will appear instead. All lines running through the selected location are splitted
at once and the newly created splitting points will be merged to one if they
are closer to each other than defined by ”gtol”. To split a line move the mouse
pointer over the line and press the ”s” key. Press ”q” to quit the command.
There is no undo but lines can be combined with the ”qseq” command. Splitting
of lines can also be done with ”qlin”. Surfaces and lines can be splitted with
”qmsh” and ”split”.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.107 qsur

’qsur’ <name>(optional) RETURN

’w’|’a’|’b’|’l’|’i’|’r’|’1’-’9’|’g’|’q’|’u’|’s’|’S’|’h’|’c’

This keyword is used to create or change a surface (see also gsur). The user
might specify a name in the command-line or by picking an existing surface
with the ”s” key.

If the surface is supposed to be meshed with unstructured triangles (element
type tr3u or tr6u) it is sufficient to select all lines with the “l” key (lowercase
“L”). This can be done either in the “all”-mode (press “a”) or “individual”-mode
(press “i”) which is default. Then generate the surface by pressing the ”g” key.
Such surfaces allow holes in it. If the surface is not plane it will need to reference
an embedded NURBS surface (see ”nurs”) or a shape (see ”shpe”). Despite it
is quite an exception it should be noted here that this kind of mesh might be
extruded in the 3rd dimension by using the ”swep” command to generate penta
elements for the cfd solver.

For the definition of a regular meshable surface three to five edges must be
defined. To create a surface move the mouse pointer over the first line of the
first edge and select it with the ”1” key (number “one”). If more than one line
is necessary to define the first edge select the following ones one after the other
with the ”1” key. Each marked line is listed in the mother konsole. If all lines
of the first edge are selected select the lines of the second edge by pressing the
”2” key, then the third and eventually the fourth and fifth. The last selected
line must match the first. All lines defining an edge will create a combined line
(see lcmb) and this combined line will show up in the definition of the surface.
Then generate the surface by pressing the ”g” key and you might continue with
the next surface. By default the interior of the surface is defined according to
Coons [14] which is a blended function. But it can also follow an embedded
NURBS-surface or a shape. To relate a surface to an existing NURBS surface
select another surface which already uses the desired NURBS with the ”S” key
(uppercase) or to reference the shape with the “h” key. Then select the target-
surface with “s”. The target surface is converted to a NURBS surface which
is necessary to be meshable with unstructured triangles (tr3u, tr6u) and to be
used to generate tet elements. The selected shape or nurbs will stay selected

93

until cleared with ’c’. In case the NURBS or shape in question is not related to
a surface it is necessary to use ”qshp” to select first the NURBS or shape and
then the surface which should reference them.

An existing surface might be completly redefined without destroying the
definition of related bodies or other geometries. After selecting a surface with
the “s” key the referenced lines might be replaced by selecting new ones. The
previous selected lines are not longer referenced.

Replace assignments by the blended function with the ”b” key. To quit the
command use the ”q” key or use ”u” to undo the last action.

It is also possible to measure distances between two pixels on the screen. Just
press the key ”w” on the positions of the two pixels. The distance is calculated
in the scale of the displayed geometry.

9.108 qtxt

’qtxt’ RETURN ’g’|’a’|’i’|’b’|’p’|’m’|’n’|’v’|’f’|’d’|’s’|’q’

This keyword is used to move node-attached texts (showing node-number and
value, see figure 8) at certain positions in the drawing area or to manipulate
them otherwhise. They are created with the key “g” while the mouse-pointer is
over the node to which it should be attached. Attention: They are only visible
after the command ”plus nt all” was used (but they are immediatelly visible
when the the commands ”qenq” or ”qadd” were used instead of “qtxt”). To
move a text pick it at the lower-left corner with the key ’p’ and place it with
the key ’m’ in the new location. To move it back to its node use ’b’. Delete
them with ’d’. The node-nr and the value in the text can be switched on and off
with the ’n’ and ’v’ key. The ’f’ key will toggle the format of the value between
“int”, “float” and “exponent”. See the command ”font” on how to change the
font-size. See “txt” for the batch mode command. Be aware that the “txt”
command offers additional functionallity, especially a user defined text-string
(description) can be added. These descriptions can be switched on and off with
the ’t’ key and placed at a leading or trailing position with the ’s’ key.

To catch more than one entity with one stroke, type ’a’ (all) before and
create a rectangular picking area by pressing two times the ’r’ key. Both strokes
define opposite corners of the rectangle. To catch only the entity which is closest
to the user type ’i’ before.

9.109 quit

’quit’

This keyword is used to terminate the program without save.

9.110 read

’read’ [<geo-file> [’add’]]|

[<ccx-file> ’inp’ [’add’|’ext’|’nom’|’new’]]|

94

Figure 8: qtxt: Node attached texts at two locations, one with node-nr and
value in exp-form and one just with his value in floating point form. The font
with gives biggest numbers was used.

[<openFoam-file> ’foam’ [’add’|’ext’|’nom’]]|

[<result-file(frd)> [’add’|’ext’|’nom’]|[<setname>]]|

[<vtk-file> ’vtk’ [’add’|’ext’|’nom’]]|

[<stl-file> [’add’|’ext’|’nom’]]|

[<list-file> ’-n’|’-e’<column>]|

[<text-file> ’stack’]|

[<edge-file> ’edg’]|

[<netgen-file> ’ng’ [’add’|’ext’|’nom’|’ndsb’]]|

[<pixel-file> [<zoom>]|[<x_zoom> <y_zoom>]]

This keyword is used to read files or commands from a file. Most commands
can be read from a file but not all of them. In general all basic commands to
create geometry are understood and up to now this is the only way to read pre
defined geometry during run-time. To read commands from a file like pnt, line,
node, or seta and so on, type

95

read geo-file

this will eventually replace entities if their names were already in use. To pre-
vent this, type

read geo-file add

this forces the program to change the names which are already in use to unused
ones. Therefore no existing geometry will be overwritten. It is advisable to name
command files which contain more than the basic geometry commands with a
different name extention as ’.fbd’ since a subsequent ’save’ would overwrite the
command file with a file which contains just the basic geometry commands (it
is a common practice to use ’.fbl’ instead).

If an ccx-input-file with loads, boundary-conditions and sets is read with a
command like

read ccx-file inp

then the loads and boundary-conditions are stored in automatically created
sets which start with a leading ’+’. For example the ccx command ’*BOUND-
ARY’ will trigger the creation of the set ’+bou’. The ccx sets are stored in cgx
sets of the same name. The load-values are stored in Datasets.

The option “nom” (no-mesh) can be used to speed up the reading of frd or
inp formatted files like:

read ccx-file inp nom

and/or

read result-file nom

This option suppresses the reading of nodes and elements and makes sense if
the mesh exists and only the set-definitions and loads or results should be read.

If the parameter ”add” is used,

read ccx-file inp add

then existing node- or element-numbers are not overwritten and the program
choses new numbers. If the ccx-input-file ends with “.inp” the parameter “inp”
might be omitted.

An openFoam file [9] can be read in a similar way

read CaseDirName foam

as an ccx input file. Sets will be created if defined in the openFoam file. Results
can be used for mapping purposes. For further details see “How to map loads”

96

in the appendix.
The user might read a result-file in frd format during runtime. If a mesh

exists and should not be overwritten just add the parameter “add”

read result-file add

this forces the program to change the numbers which are already in use to
unused ones. Existing datasets will be extended by the new node-numbers and
their data. The option “ext”

read result-file ext

will also extend the existing datasets but in this case the nodes and elements are
updated (modified). If no parameter follows then existing nodes and elements
are updated and the new datasets will be appended to existing ones. Since
the dependency checks are time consuming the user might scip them by using
the ’ne’ parameter. Then the existing mesh is deleted before the new one is read:

read result-file new

It is also possible to read files written in the result format (.frd) during run-
time only to define sets of nodes or elements without changing the definitions
of them. The command

read result-file setname

will create a set of the name setname and all nodes and elements listed in
the file mesh.frd will be added to that set. But this will NOT create or modify
the nodes and elements. All nodes and elements must exist and will not be
changed.

In case a file written in an un-common format should be evaluated the user
may read the file into the cgx stack memory:

read textfile stack

Then the user may loop over the stack using “while” and “valu” to read and
evaluate each record. Extracted data can be stored in new datasets (see “ds”
and “node”). An example can be found in “User File Parser”.

A mesh in vtk format can be read. Still experimental, only some element
types are supported

read file.vtk vtk

.
An ascii or binary stl file can be read with

97

read file.stl

The file stores just triangles which will be interpreted as unconnected trian-
gle elements. The nodes of this mesh can be merged (“merg”) and the resulting
connected elements can be used as a basis for a tet mesh (see “mesh” and
“mids”).

If a file with the numbers of nodes or elements is not available in the result
format (.frd) then a so called list-file could be read instead. In such a file either
numbers of nodes or elements can be defined. The numbers found in a spec-
ified column is interpreted as a node- or element-number. If ”-n” is specified
the numbers are interpreted as nodes and if ”-e” is specified the numbers are
interpreted as elements. For example

read list-file -e3

will define a set storing names of elements from the third column of file list-
file.txt. The created set-name is always the name of the file.

NETGEN Import

In case NETGEN is used for meshing then the edges which are generated by
NETGEN can be included for modifications;

read edge-file edg

will create beam elements based on the defined edges. When the modifications
are done, the beam elements can be exported in the NETGEN-edge format
with the ”send setname stl” command and used for meshing in netgen (see also
”How to deal with CAD-geometry”). The netgen mesh can be imported with

read netgen-file ng

If the NETGEN (.vol) file contains solid elements, all shells and beams are only
used to define surface sets of nodes and faces (+set<nr>). The shell elements
and beams are deleted by default. If you want to be more selective about the
elements imported from netgen, you use the keyword ndsb (NoDeleteShellsAnd-
Beams).

read myfile.vol ng ndsb

This keyword forces all the netgen elements to be imported. Be aware that the
imported NETGEN element types (1D, 2D and 3D elements) are distributed in
various sets for further operations (as well as being contained in set ’all’). For
instance the set ’+typ11’ will contain all elements of type 11 (2-node beams).
Please see ”Element Types” for a key to the element numbers.

98

If a pixel-file in xwd-format is available it can be included as a background-
picture. The user can then create geometry based on this picture:

read pixelfile 2 4

here the picture will be scaled by a factor of “2” in x- and “4” in y-direction.
Delete it with ”del pic”. The picture can not be modified in cgx. Only scal-
ing during reading (with either a global factor or separate scaling in x- and
y-direction) is supported. Other modifications have to be made with external
software.

The command parameters are writen to the ”stack”.

9.111 rep

’rep’ <set>

This keyword is used to refresh entities of a certain set. This is done automati-
cally but with one exception: The rendering of the interior definition of surfaces
must be triggered manually with this command. The rendered surfaces can be
displayed with ”plot” or ”plus” using the type ”si”.

9.112 rnam

’rnam’ <set> <set>

This keyword is used to rename a set.

9.113 rot

’rot’ [’n’ <set>|’nodenr’] |

[[’u’|’d’|’r’|’l’|’c’ <angle>]|->

[’x’|’-x’|’y’|’-y’|’z’|’-z’]]

This keyword is used to rotate the view-direction to the model. For example

rot u 10

will rotate the view-direction 10 degrees upwards. The meaning of the other
letters is down d, right r, left l, clockwise c. The remaining letters will rotate the
view into a pre-defined direction. For example the user will look in x direction
after the command

rot x

and against the x direction with the command

99

rot -x

and so on.
The parameter ’n’ is used to rotate the model in a way that the viewing di-

rection is in normal direction at the location of a given node. Either a node-nr
or a set with a node can be given:

rot n nodeset

Nevertheless the node might be obscured by other parts of the model. This
can be checked with the ”test” command.

9.114 save

’save’

This keyword is used to save the geometry (if any) to a file named as the input
file but with the extension .fbd. If a file with that name exists already, then
this file will be saved with the new file extension .fbb as a backup.

9.115 scal

’scal’ [’s’|’v’|’d’] [<value>]

This keyword is used to scale the graphic presentation of values but no values
of entities. The scaling of the value itself can be done with the command ”ds”.
For example the command

scal s 0.5

will scale the range of values presented in the color plot by a factor of 0.5.
The command

scal v 5.

will scale the length of vectors by a factor of 5. The command

scal d 2.

will scale the deformed shape by a factor of 2. Without a value it restores
the default value. See also ”Toggle Vector-Plot”, ”Toggle Add-Displacement”,
”Datasets”.

9.116 send

’send’ ’init’|

100

<set>|[(dyn:)set#<nr>] ’fbd’ [’c’,’e’,’f’]| ->

’stl’| ->

’abq’|’ans’|’ast’|’dar’|’dyn’|’frd’|’gmp’|->

’lst’|’nas’|’ng’|’pat’|’skv’|’tcg’ <RETURN>|

[’bin’]|[’dbin’]|

[’ds’<nr>[+] [e<nr>[’,’|’-’<nr>]..]]|

[’tmf’]|

[’sta’ <refspeed>]|

[’crp’ <timefact> <refspeed> <writefreq>]|

[’comp’]|

[’mpc’ [[<rotation>|’v’<node> <v1> <v2> <v3>]|

[’n’<node>]]]|

[’names’]|

[’raw’]|

[’spc’ <dofs(1-6|t|p)> <value>]| ->

[<dofs(1-6|t|p)> ’ds’<nr> e<nr>]| ->

[’nor’ <fac1> [<fac2> <fac3>]]| ->

[’nor’ ’ds’<nr> ’e’<nr>]|

[’spcf’ <dofs(1-6|t|p)> <value>]| ->

[<dofs(1-6|t|p)> ’ds’<nr> ’e’<nr>]| ->

[’slide’ ’c’|’s’|’rx’| ->

’ry’|’rz’|’tx’|’ty’|’tz’]|

[’trac’ [<v1> <v2> <v3>]|[’ds’<nr> ’e’<nr>(1.comp of a vec)] [+|-]]|

[’pres’ [<value>]|[’ds’<nr> ’e’<nr>] [+|-]]|

[’film’ [[n<nodnr>][<temp>]|->

[[[’ds’<nr>]|[sq<dsnr>-<dsnr>]] ’e’<nr>]->

[[<coeff>]|->

[[’ds’<nr>]|[sq<dsnr>-<dsnr>] ’e’<nr>]] [+|-]]|

[’rad’ [[<temp>|[cr<temp>]|[’ds’<nr> ’e’<nr>]] ->

[[<emis>|[’ds’<nr> ’e’<nr>]] [+|-]]|

[’dflux’ [[<load>]|[’ds’<nr> ’e’<nr>]] [+|-]]|

[’mflow’ [[<load>]|[’ds’<nr> ’e’<nr>]] [+|-]]|

[’cflux’ <load>]|

[’force’ <f1> <f2> <f3>]|

[’quadlin’]|

[’sur’ [+|-]]

’send’ <set> ’dolfyn’ [<type> <set>]

’send’ <set> [’duns’|’isaac’] [[<type>|’periodic’] <set>]

’send’ <set> [’foam’] [<type> <set>] | ->

[’cyclic’ <set> <set> ’tx’|’ty’|’tz’|’rx’|’ry’|’rz’|

’cx’|’cy’|’cz’|<vx,vy,vz>]

’send’ <dep-set> <indep-set> ’nas’|’abq’|’ans’ [’cycmpc’|’cycmpcf’ ->

’px’|’py’|’pz’|’tx’|’ty’|’tz’| ->

’rx’|’ry’|’rz’|’cx’|’cy’|’cz’<+-segments> ’c’|’u’<NR>]| ->

[’areampc’ <dofs(’t’|’p’|’1-6’)> ’c’|’u’<Nr>]|’f’<value> ->

[’areampc’ ’slide’]| ->

101

[’areampc’ ’presfit’ [’s’<value>]]| ->

[’gap’ <vx> <vy> <vz> <tol>]

This keyword is used to send data to the file-system. In certain cases the written
file-name contains given parameters to make them unique which is convenient
when the user writes several files of the same type. But on the other hand
this makes it sometimes hard to know in advance how the file would be named.
Therefore the send command writes the file-name to the stack from which the
user can derive the name if the ”stack” was activated.

The following formats are known (but not all options for all formats are fully
supported so far); The geometry-format (fbd)

send set fbd

or

send set fbd c

will complete the set downwards before writing.
Usually the point coordinates are written in exponential format but with

option ’f’ after ’fbd’ the point coordinates will be written in long float (double)
format:

send set fbd f

Useful when otherwhise a ’0.’ is not exactly zero. The command

send set fbd e

will write all model-edges as small lines running from node to node. A spe-
cial case of a command file is written with

send init

named init.fbl which stores status variables (also written at the end of geometry
files). This can be used in a second or later session by reading it with the ”read”
command:

read init.fbl

The user might use the ”menu” command to define two command lines for
the writing and reading of the init file to a certain location. With this approach
a certain orientation of the model can be quickly stored and restored.

A surface description with triangles (stl)can be written:

send all stl

102

This triangles are based on elements which were created by meshing surfaces or
by automatically triangulated element-faces of all types of supported elements.
If be2 elements are included in the mesh (meshed lines) a so called edge file
for NETGEN will also be created if stl is written. NETGEN provides also a
stand-alone mesher called ng vol. The mesher can be found in the netgen sub-
directory nglib. As for the stl-format triangles can be written for this mesher
with:

send set ng

It has the advantage that the triangles are directly used to define tetras and not
as with stl are only used to define the outer shape of the body.

The following mesh-related formats are known: Femview and CADfix (frd),
Nastran (nas), Abaqus (abq), Ansys (ans), CodeAster (ast), Samcef (sam), Dar-
win (dar), ls-dyna (dyn), patran (pat, only sets), gagemap (gmp, only sets) and
Tochnog (tcg) but only ccx (Abaqus) is fully supported. Good support is also
provided for ansys, darwin and nastran. If no further parameter follows then
just the definition of the nodes and elements will be written:

send all abq

will write the mesh in the format used by Abaqus and the CalculiX solver.
If the parameter ”ds” is provided followed by the dataset-nr

send set abq ds1

then the values stored in Dataset 1 are written. For ’frd’-format the ’ds’ pa-
rameter w/o any further values forces cgx to write all datasets but w/o the
internally calculated ones:

send all frd ds

If a “+” sign appears at the end of the ’ds’ parameter

send all frd ds+

or

send all frd ds1+

then also the internally calculated values like vMises-stress are written. If the
user needs to send more than one dataset but not all he can either just combine
them (linux:cat) or use several send commands and read the resulting files one
after the other in a new cgx session:

103

To write more than one dataset:

send all frd ds1

asgn mem free

sys mv all.frd ds1.frd

send all frd ds2

asgn mem free

sys mv all.frd ds2.frd

To combine the datasets in a new file using a new cgx session:

read ds1.frd

read ds2.frd

send all frd ds

The ”asgn” command is optional and should be used if the model is big com-
pared to the memory of the computer. Additionally the entities might be spec-
ified with the ’e’ parameter followed by the numbers to write. The numbers
have to be separated by a ’,’ sign or in case of a range by a ’-’ sign:

send all frd ds1 e9,25-30

The “bin” parameter has the same meaning as the “ds” parameter but in this
case the result is written in the single precision binary form of the frd-format
(’dbin’ writes formally double precision but the data are single precision). It
writes always all datasets. In case data should be written for the crack analysis
tool Darwin

send all dar ds

will write all datasets. Since Darwin changed the format from version 7.1 on, it
is possible to change the format with the parameter ’v7.1’ as the last parameter
(use ’v7.1’ and the darwin conversion tool for newer versions). If the set is of
the ordered type and includes nodes (see “qseq”) then the data are written in
tabular form for use in a 1D crack-prop Darwin-analysis.

In certain circumstances the user needs an easy solver independent format
to write node- and element numbers. This is provided by the “lst” parameter:

send setname lst

will write the node- and element-numbers in lines of seven space separated
rows.

The export of ’skv’ input data for the quasi-normals is included:

send setname skv ds1

will write the node coordinates in y direction as ’r’ coordinates, the x di-
rection as ’z’ coordinates, the values from the given dataset as the ’betaru’

104

value, datasetnr+1 as the ’betazu’ value, datasetnr+2 as the ’sigma’ value and
datasetnr+2 as the ’entropy’ value.

Missing lower entities (nodes, points, lines etc.) will be added to the set be-
fore the set is written if the parameter ”comp” follows. For example geometry
like bodies

send set fbd comp

will be extended by surfaces, lines and points or

send set frd comp

will include all nodes used by the elements to the set elem and will then write
the file.

The parameter “quadlin” forces the conversion from second order elements into
single order elements were each element is subdivided into 8 single order ele-
ments. This takes place during writing and will not change the current state of
the mesh in cgx. Up to now it is only available for the abq format:

send all abq quadlin

If the parameter ”tmf” follows the definition of a solver format

send set abq tmf

then the mesh plus all temperatures with the necessary solver context for tmf
calculations is written. If the parameter ”sta” follows

send set abq sta 2900.

then the mesh plus all temperatures with the necessary solver context for a
static calculations is written. Here the value for ”speed” is a reference value
for eventual numerical values in the TEXT-Block of the Datasets in the result
file (frd-file, see ”Nodal Results Block”). A scaling factor will be determined
based on the reference value (here a ref.speed of 2900.) and the individual
TEXT-Block values (factor = speed**2 / refspeed**2). This factor is used in
*AMPLITUDE commands which will also be written and will be used to scale
static loads which are referenced in the *STEP data. If the parameter ”crp”
follows

send set abq crp 1. 2900. 1

then the mesh plus all temperatures with the necessary solver context for creep
calculations is written. Here the value for ”timefact” scales the time-values of
the Datasets, ”speed” is a reference value for scaling static loads (see option

105

“sta”) and writefreq limits the output to the result-file.

If the parameter ”names” follows the solver-type then just the element- or node-
numbers are written. This is useful for defining sets for the solvers. The com-
mand

send steel abq names

will write the node and element numbers included in ”steel”. This file could
be used to define a set for material assignments, boundary conditions or loads.
If all sets should be written at once, use:

send all abq nam

When using “abq” together with “names” or “sur” a set is defined before the
data lines. If this is not desired then the “raw” parameter has to be used instead
of “names” or “sur”:

send nodeset abq raw

To write sets for ls-dyna it is necessary that an identification number is part of
the setname. The ’#’ character is used to separate them:

send steel#1 dyn names

or

send surfaces#2 dyn sur

It is also possible to define and send some constraints to the file system. To
constrain degrees of freedom (dof) of selected nodes use the parameter ”spc” in
combination with the numbers of the constrained dofs and optionally a forced
deflection. For example:

send hinge abq spc 123

will constrain the translational degrees of freedom of the nodes in set ”hinge”.
Or

send hinge abq spc 12356

will leave just one rotational degree of freedom unconstrained. And

send move-nodes abq spc 1 0.1

106

will move the nodes in set move-nodes by 0.1 in direction 1.

send move-nodes abq spc 1 ds1 e1

will use the values from dataset-nr 1 and the entity-nr 1 for the forced dis-
placement in direction 1 and

send move-nodes abq spc nor 0.1

will force the nodes included in set move-nodes by 0.1 in the normal direc-
tion (normal to the element-faces). The components of the vectors at the node
positions can be scaled individually (fac1-3)). The vector length can also be
read from an entity of a dataset:

send move-nodes abq spc nor ds1 e4

A subsequent calculation with ccx will move the mesh accordingly. After solving
the deformed mesh can be used as a new mesh for further calculations. With this
procedure geometric variations are possible without manipulating the geometry
(morphing).

For the ccx cfd finite volumen method there is a “spc” function available
which works on faces instead on nodes (see *BOUNDARYF in the ccx manual).

send Inlet abq spcf 123

The degees of freedom 123 define velocities and not deflections. Its called “spcf”
and works otherwhise accordingly to the “spc” command. For the *INITIAL
CONDITIONS keyword of ccx you write the data for example with

send all abq ds123

were ds123 is the dataset-nr shown in front of datasets (not loadcases) in cgx.
It can be a vector (velocity) or scalar (pressure, temperature).

The parameter ”slide” in combination with one additional parameter will
create equations that force the selected nodes to move only in a plane. If the
additional parameter ”s” is specified then the specified nodes will be attached to
their element faces. All nodes of the affected element-faces have to be selected.
For example you type:

send sur abq slide s

and this should attach the node with the node-nr. 1 to a plane parallel to
the surface of the corresponding element-face. This element uses the node 1,
2, 3, 4, 5, 6, 7 and 8 where 1, 2, 3 and 4 are on the surface of the mesh. The
program will detect this element face and constrain the node only then if the
nodes 2, 3 and 4 were also included in the set ”sur”! The detected elements or

107

faces of volume-elements will be assigned to the set. So it is possible to check
the detected elements. Instead of providing a set with the necessary nodes, you
might instead provide a set with shell-elements or/and faces of volume-elements.
The nodes will be derived from them. In most cases this is the most convenient
way.

A special case which works probably only in ccx (abaqus might give wrong
results) is triggered by the “c” parameter. It behaves as for the “s” parameter
but works for cycsym calcs:

send cycsur abq slide c

A new set with new nodes will be created with the name “<set> COPY” which
has to be used in the cycsym definition in ccx instead of “<set>”. In addi-
tion equations are specified which connect the new nodes with the original ones
in the normal direction of the element faces. In this way two faces used in a
cyclic symmetry connection will slide at each other instead of beeing glued in
all directions.

If nodes should slide radially to the y axis then use ”ry”:

send sur abq slide ry

or use ”ty” if the nodes should move only tangential to the y axis. In both
cases the axial movement is still permitted.

The parameter ”sur” will write the surfaces of the mesh either in abaqus-
format for the *SURFACE command, in ls-dyna or in frd-format as shell ele-
ments. For example

send top abq sur

will write the elements in set top together with the face-nr (Important: Only
free surfaces of the mesh are regarded, internal faces are unknown and can not
be identified). The front- or rear side of the face (pos or neg) is selected with
the ’+’ or ’-’ parameter:

send surset abq sur -

will write all surfaces in set surset in abaqus format and all surfaces which have
a potentially negative side will be written in that manner. To write surfaces
for ls-dyna it is necessary that an identification number is part of the setname.
The ’#’ character is used to separate them:

send surfaces#2 dyn sur

The parameter ”pres” is used to assign pressure values to element faces. For
example

108

send surf abq pres 0.05

will assign the pressure value 0.05 to all element-faces in set surf. If a dataset
with nodal values is available it is also possible to use this values instead of
using a uniform value for all faces. For example

send surf abq pres lc1 e1

will specify the dataset-nr 1 and the entity-nr 1 to be used instead of a uni-
form value. The front- or rear side of the face (pos or neg) is selected with the
’+’ or ’-’ parameter (it has to be the last parameter).

The parameter ”trac” is used to assign a surface traction vector to element
faces. For example

send surf abq trac 0.05 0.01 0.1

will assign the vector 0.05 0.01 0.1 to all element-faces in set surf. If a dataset
with nodal values is available it is also possible to use this values instead of
using uniform values for all faces. For example

send surf abq trac lc1 e1

will specify the dataset-nr 1 and the entity-nr 1,2,3 to be used instead of uniform
values. The front- or rear side of the face (pos or neg) is selected with the ’+’
or ’-’ parameter (it has to be the last parameter).

The parameter ”film” is used to assign free-stream temperatures and ther-
mal heat coefficients to element faces. It works similar to the ”pres” option.
For example

send surf abq film 1200. 0.5

will assign the film temperature of 1200 and the coefficient 0.5 to all element-
faces in set surf. If datasets with nodal values are available it is also possible to
use this values instead of using a uniform value for all faces. For example

send surf abq film ds1 e1 0.5

will specify the dataset-nr 1 and the entity-nr 1 to be used for the tempera-
ture instead of a uniform value, or

send surf abq film ds1 e1 lc1 e2

will specify also the dataset-nr 1 with the entity-nr 2 to be used for the film-
coefficients instead of a uniform value. The front- or rear side of the face (pos or
neg) is selected with the ’+’ or ’-’ parameter (it has to be the last parameter).

109

Instead of a single dataset-nr a range can be given:

send surf abq film sq1-9 e1 sq1-9 e2

and instead of giving e determined value for the temperature a node of a ther-
mal network can be specified with:

send surf abq film n1277 ds1 e1

The parameter ”rad” is used to assign a sink temperatures and the emissiv-
ity to element faces. It works similar to the ”pres” option. For example

send surf abq rad 1200. 0.5

will assign the sink temperature of 1200 and the emissivity 0.5 to all element-
faces in set surf. If datasets with nodal values are available it is also possible to
use this values instead of using a uniform value for all faces. For example

send surf abq rad lc1 e1 1200.

will specify the dataset-nr 1 and the entity-nr 1 to be used for the tempera-
ture instead of a uniform value, or

send surf abq rad lc1 e1 lc1 e2

will specify also the dataset-nr 1 with the entity-nr 2 to be used for the emis-
sivity instead of a uniform value. The front- or rear side of the face (pos or
neg) is selected with the ’+’ or ’-’ parameter (it has to be the last parameter).
If cavity radiation should be used then the command has to use the ’cr’ attribute:

send surf abq rad cr1000. 0.7

Here 1000. is either the sink temperature, or, if the ccx parameter ENVNODE
is active (*RADIATE,ENVNODE), the sink node.

The parameters ”dflux” and ”mflow” are used to assign an energy stream
or a mass-flow to element faces. They work similar to the ”pres” option. For
example

send surf abq dflux 0.5

will assign the flux of 0.5 to all element-faces in set surf. And

send surf abq mflow 0.5

will assign the mass-flow of 0.5 to all element-faces of the given set. If a dataset

110

with nodal values is available it is also possible to use this values instead of
using a uniform value for all faces. For example

send surf abq dflux lc1 e1

will specify the dataset-nr 1 and the entity-nr 1 to be used instead of a uni-
form value. The front- or rear side of the face (pos or neg) is selected with the
’+’ or ’-’ parameter (it has to be the last parameter).

The parameter ”cflux” is used to assign an energy stream to nodes. For
example

send surf abq cflux 0.5

will assign the flux of 0.5 to all nodes in set surf.
The parameter ”force” is used to assign force values to nodes. For example

send nodes abq force 1. 20. 0.

will assign the specified forces to all nodes of the set nodes.
The parameter ”mpc” is either used to create input for the user-subroutine

umpc which forces all nodes from ”set” to rotate by an average value speci-
fied with ”rotation” around the vector v, or to create a rigid body. In case of a
rotation the value has to be in degree were 90 degree is orthogonal. For example

send nodes abq mpc 4. 1. 0. 0.

will assign the nodes of the set ”nodes” to the user-subroutine umpc and will
force them to rotate by 4 degree around the x-axis. Two files are produced. One
file with the equation and the reference node has to be included in the model-
definition-section and the boundary-file in the step section. The reference node
is used to apply the pre-defined rotation but can also be used to apply a moment
by using the *CLOAD command. The number of the reference node is always
one above the highest node number in the current mesh. You may use “node”
to increase the last node number in the model.

In case of a rigid-body request there are two other parameters in combina-
tion with “mpc” available. The rotation value is replaced by a nodenr of an
independent node which will be created based on either provided coordinates

send nodes nas mpc v4711 1. 0. 0.

or by averaged coordinates based on the specified set (here “nodes”) which
are interpreted as dependent nodes:

send nodes nas mpc n4711

In both cases an RBE2 (nastran) or *RIGID BODY,REF NODE=nodenr (ccx,abq)

111

element will be created which connect all this nodes. See also ”asgn” on how to
predefine a thermal expansion coefficient “alfa” for this element (only nastran).

Another useful method are so called ”cyclic symmetry” equations. These
equations are used when just a section of a rotation-symmetric part like a disk
is modeled. These equations force the two cutting planes of such a section to
move exactly equal in the cylindrical system. If the coordinate system of the
displacements for the solver is rectangular (xyz) then the syntax is:

send dep indep nas cycmpc rx12 c1

Here ”dep” is the set containing the nodes of the dependent side. These nodes
will be replaced by the solver with the independent nodes from the set ”in-
dep”. In this case the equations will be written in the nastran format ”nas” (in
nastran called MPC). The parameter ”rx12” defines the displacement system
as rectangular ”r”, the rotational axis is ”x” and the ”12” defines the num-
ber of segments in 360 deg, therefore the angle of the segment is 360 deg /12.
Attention: The sign of the number-of-segments must be negative if the angle
between the independent side and the dependent side is negative. When the
nr-of-segments is omitted the value is calculated individual for each node. The
”c” triggers the correction of the position of the dependent nodes to a position
defined by the angle of the segment (highly recommended), ”u” would prevent
the correction. The ”1” will be the identifier for the equations if the format is
nas (nastran). In case the format would be ans (ansys) then the ”1” would be
the number of the first equation. No number is required for abq (abaqus and
calculix). If the coordinate system of the displacements is cylindrical (rtz) then
the example would be:

send dep indep nas cycmpc cx12 c1

Only the ”r” from ”rx12” is changed to ”c”. A thermal connection is cre-
ated with:

send dep indep nas cycmpc tx c

The thermal connection is triggered by the ”t”, a pressure connection with
“p”. See comments above for the single parameters. In case of the ccx cfd finite
volumen method the syntax is similar but only the function name itself differs:

send dep indep abq cycmpcf rx12 c1

The function name for cfd elements is ’cycmpcf’ instead of ’cycmpc’.
In addition it is possible to ”glue” independent meshes together. For this

purpose the dependent nodes are tied to independent elements by equations.
Choose the finer mesh for the dependent side. The equations are based on the

112

shape-functions of the element types. For example

send dep indep nas areampc 123 c1

will connect the nodes in the set dep to element-faces described by nodes in-
cluded in the set indep. The set dep must contain all nodes which should be
”glued” and the set indep should contain all nodes of the elements surfaces to
which the dep nodes should be glued. The numbers ”123” are the degrees of
freedom which will be connected (”t” will create a thermal connection, “p” a
press-fit connection). The ”c” triggers the correction of the position of the de-
pendent nodes to a position on the surface of the independent elements (highly
recommended and default), ”u” would prevent the correction, “f” forces the
dependent node away from the independent face. Of course the mesh has to
be written after the use of such a command, otherwhise the corrected node
positions would not be regarded and the equations would lead to increased stiff-
ness and decreased accuracy. The ”1” will be the identifier for the equations if
the format is nas (nastran). In case the format would be ans (ansys) then the
”1” would be the number of the first equation. No number is required for abq
(abaqus and calculix), see also ”How to connect independent meshes”.

There is also the ”slide” option in combination with the ”areampc” option:
For example if the mesh of a turbine-blade and a disk should be connected with
each other in a simple but realistic way then a sliding condition between this
parts can be established. The command:

send dep indep abq areampc slide

will connect the nodes in the set dep to element-faces described by nodes in-
cluded in the set indep but only in the direction perpendicular to a plane defined
by either the related faces to nodes of the dep-set or to faces which are included
in the dep set! This difference is important since in a situation were the nodes
in the dep set do not fully define existing faces (e.g. line or point contact) the
user can include in the dep set some faces which describe the desired sliding
direction (most often some faces from the indep side). Therefore all dep-nodes
and all indep-nodes must lie in the same plane and will slide in the same plane!

Another case is considered with the ”presfit” option in combination with
the ”areampc” option. For example if a cylindrical press fit should be simulated
then a forced displacement between the two intersecting surfaces is necessary.
This forces the dependent nodes to move to the independent face. Two modes
are available:

send dep indep abq areampc presfit f

simulates sticking friction and with the option s

send dep indep abq areampc presfit s

113

works for sliding conditions. The user might request a certain value for the
press fit if the overlapping of the mesh do not represent the necessary distance:

send dep indep abq areampc presfit s0.06

will move the dep-nodes 0.06 in the normal direction of the independent faces
(works also with option f). Additional nodes are generated and can be used
to request the reaction forces on the dependent nodes. They are stored in a
set named N¡dep-set-name¿¡ind-set-name¿. Two files are produced. The one
with the equations has to be included in the model-definition-section and the
boundary-file in the step section.

To define so called ”gap” elements and related control-commands: These
elements will connect parts if they are closer as a certain distance. For example
if the distance is zero (contact). The command:

send dep indep abq gap 1. 0. 0.

will connect the nodes in the set dep and indep with gap-elements but only
if they match each other in the direction 1.

Special cases are the cfd-solvers Duns, Isaac and OpenFoam. The boundary
patches are an integral part of the mesh. So it is necessary to specify all bound-
ary patches when writing the mesh. Which means that all free surfaces of the
mesh must be specified. This is an example for OpenFoam:

send all foam cyclic cyc1 cyc2 cx patch in patch out wall wall

will write the so called polyMesh description to the file-system. After the send
command the set (all) with the mesh is specified, then the format (foam), then
cyclic boundary conditions (cyclic cyc1 cyc2 cx) between set cyc1 and cyc2 of
the axi-symmetric case around x (cx), then boundary conditions of type patch
for set ”in” (patch in), then boundary conditions of type patch for set ”out”
(patch out) and boundary conditions of type wall for set ”wall” (wall wall).

The symmetric boundary-conditions (base-type: cyclic) can be axi-symmetric
(c) around x,y,z or rectangular (r) in direction of x,y,z. Only for OpenFoam and
in the rectangular (Cartesian) case also a vector pointing in the direction of the
symmetry can be specified (ie: 1.,1.,0.)

For dolfyn, duns and isaac the same syntax has to be used:

send all duns viscous-wall profil subsonic-inflow in subsonic-outflow out

send all isaac WALL profil FARFIELD far EXTRAPOLATE out

send all dolfyn INLE ingang OUTL uitgang ... etc. The parameters like ’viscous-

114

wall’, ’FARFIELD’, ’INLE’ are specific for the single cfd tools and are described
in the documentation of these programs. The cgx knows a certain BC called
’periodic’ to glue the left side to the right side of a mesh and so creating a pe-
riodic mesh (cascade). One set for each pair of lines or lcmb’s (2D) or surfaces
(3D) must be used. For example:

send all duns viscous-wall profil subsonic-inflow in subsonic-outflow out peri-
odic cyc1 periodic cyc2 periodic cyc3

The cgx is able to write parts of the solver input file when certain values
are defined (see ”valu”). If they are defined the boundary conditions and gas
properties will be written to the “duns.bou” or “isaac.dat” file. The following
values can be provided for that purpose:

WallTemperature

temperature // inlet

pressure // outlet

stagnation-pressure // inlet

stagnation-temperature // inlet

u-velocity // inlet

v-velocity // inlet

ini-velocity-factor // scales the initial velocity field

The user has to add missing commands before he can use the input files.
The initial flowfield values ’MACH’ and ’ALPHA’ for isaac is scaled by ’ini-

velocity-factor’ for better convergence if a ’JET’ boundary condition is speci-
fied. In this case the inlet conditions are defined using the ’JET’ conditions (the
necessary inlet static pressure is calculated by cgx if the stagnation values are
present). Further information is available in ”Remarks Concerning Duns and Isaac”.
The velocity of the initial flowfield for duns is also scaled by ’ini-velocity-factor’.

Be aware that duns and isaac use block meshes which must be created us-
ing the set ’all’. So the use of set ’all’ together with the parameter ’block’ is
mandatory when the block structure is needed! Nevertheless the user might
only assign an element type to a sub set so that only a part of the geometry
will be meshed (see ”mesh”).

9.117 seqa

’seqa’ <seq> [’nod’|’pnt’ <name> .. <=>]|

[’afte’|’befo’ <name> ’nod’|’pnt’ <name>.. <=>]|

[’end’ ’nod’|’pnt’ <name> .. <=>]

This keyword is used to create or redefine a set marked as a sequential set.
This set is used for spline definitions (see line). With the command qlin such a
sequential set is automatically created. To begin such a set type for example:

SEQA Q003 PNT P004 P005 P006 P00M P00N

115

The program will create or overwrite the set Q003. The command will con-
tinue in the next line if the sign ”=” is found:

SEQA Q003 PNT P004 P005 P006 =
P007 P008 P009

The parameter AFTE will insert additional points after the first specified point
in the existing sequence. The parameter BEFO will insert additional points be-
fore the first specified point and the parameter END will add additional points
to a sequence.

9.118 seqc

’seqc’ <set>

Converts an “lcmb into a spline. The lcmb will be deleted (not the referenced
lines) and keeps the sum of divisions but sets the bias to 1.

9.119 seql

’seql’ <set> <nr>

Makes splines from all sorts of lines. The nr of new created inner points is
defined by the parameter nr. Also existing splines will be redefined.

9.120 seta

’seta’ <set> [’!’|’n’|’e’|’p’|’l’|’c’|’s’|’b’|’L’|’S’|’v’|’se’| ->

’sh’|’ld’<div> <[\]name|*chars* ..>] |

[’n’|’e’ <name> ’-’ <name> <steps>]

This keyword is used to create or redefine a set (see also qadd). All entities like
points or bodies and so on must be stored at least in one set to be reachable.
The set ”all” is created automatically at startup and will be open (see seto) all
the time unless explicitly closed (see setc). To add points to the set ”dummy”
type:

seta dummy p p1 p2

This will add the points p1 and p2 to the set dummy. The following entities are
known:

Nodes n, Elements e, Faces f, Points p, Lines l, Surfaces s, Bodies b, Nurb
Lines L, Nurb Surfaces S, Values v, names of other sets se or shapes sh. If the
entity of the specified type does not exits a set of that name is assumed and if
existing then all it’s entities of the specified type are appended:

116

seta set1 n set2

will append only the nodes in set2 to set1. If the type ’se’ is used then the
full content of set2 is appended. Wildcards (*) can be used to search for set-
names of a certain expression.

The program will automatically determine the type of the entities if not
specified, but then the names must be unique. More than one name can be
specified. A minus sign between two numbers of nodes or elements specifies a
range of entities with steps of ”steps”:

seta set1 n 1001 - 1100 12

If the ’ !’ sign is specified instead of a setname then the program generates
automatically sets with system defined setnames and stores entities in it. This
can be used is to separate independent meshes and line-loops. The single inde-
pendent meshes are then referenced by new setnames, for example:

seta ! all

will determine all separate (disjunct) meshes in set “all” and store them in
sets called +CF<nr>. Figure 9.120) illustrates this function. Other entities
have to be specified as an additional argument after the ’ !’ sign:

seta ! l all

will determine all separate (disjunct) line-loops. Other entieties are not im-
plemented so far.

Values ”valu” can be used as arguments since they would be replaced by
their content. It is necessary to mask a value with a leading ’\’ in cases were
the value should not be replaces by its content:

seta set v \val1 \val2

will not substitute the val1 and val2 but add the values itself to the set.
Lines with a division higher than specified with

seta setname ld50

can be stored in a set. Here all lines with a division above 50 are stored in
setname.

9.121 setc

’setc’ [<set>]

117

Figure 9: All disjunct meshes in the jet-engine are successive coloured

This keyword is used to close an open set. Without parameter setc will close
the at last opened set.

9.122 sete

’sete’ <set> ’n’|’e’|’p’|’l’|’c’|’s’|’b’|’S’|’L’|’se’|’sh’ ->

’max’|’min’|’strict’

This keyword is used to enquire other sets which have entities in common or
which have an identical content. Example:

sete blade p min

searches for sets who store at least the same points as ”blade” (always the
set ”all”). The option “max” searches for sets whose entities are completely
included in the specified set. The option “strict” searches for identical sets
regarding the specified type of entity.

118

9.123 seti

’seti’ <set> ’n’|’e’|’p’|’l’|’c’|’s’|’b’|’S’|’L’|’se’|’sh’ ->

<set> <set>..

This keyword is used to generate an intersection of certain sets (what do the
specified sets have in common of the specified entity-type?). Example:

seti intersectSet p set1 set2 set3

generates a set intersectSet with points which are stored in each of the sets
set1 set2 set3.

9.124 setl

’setl’ <set> [’l’]|’u’

This keyword is used to lock a set:

setl set

Or to unlock the set:

seto set u

A locked set will not store any additional entity and no entity will be removed.
This can be used to prevent them from beeing unintendedly changed by using
commands like “seto” or “swep”.

9.125 seto

’seto’ [<set>]

This keyword is used to enquire open sets:

seto

Or to mark a set as open:

seto set

All newly defined or redefined entities will be members of all open sets. See
setc how to close an open set. An existing set which was locked with “setl” will
be unlocked by this command.

119

9.126 setr

’setr’ <set> ’n’|’e’|’p’|’l’|’la’|’ll’|’ls’|’ln’| ->

’s’|’b’|’L’|’S’|’v’|’se’|’sh’

<name|*chars*> <name|*chars*> ..

This keyword is used to remove entities from a set (see also qrem. The entity
will not be deleted. It is just not longer a member of that set. To remove entities
from the set dummy type:

setr dummy p p1 p2

This will remove the points p1 and p2 from the set. The following entities
are known: Nodes n, Elements e, Points p, Lines l, Surfaces s, Bodies b, Nurb
Lines L, Nurb Surfaces S, Values v, other sets se and shapes sh. The program
will automatically determine the type of the entities if not specified, but then
the names must be unique. Wildcards (*) can be used to search for setnames
of a certain expression.

The type of lines can be given with the second digit:

setr dummy ls all

This will remove only splines from set ’dummy’. Known are ’l’ straight lines,
’a’ arcs, ’n’ nurbs, ’s’ splines.

9.127 shpe

’shpe’ <name|!> [’pln’ <P1> <P2> <P3>] |

[’cyl’ <P1> <P2> <R1>] |

[’con’ <P1> <P2> <R1> <R2>] |

[’tor’ <P1> <R1> <P2> <R2>] |

[’sph’] <P1> <R1>]

This keyword is used to create a shape which can be used to define the interior
of surfaces or to be used as a target for projections (see proj) or to split entities
(see split). REMARK: So far only the plane shape can be used for all kinds
of projections and splitting. The other types can not be used for splitting and
only the normal projection is implemented for them.

A plane shape is defined with the parameter “pln” followed by the names of
three points:

shpe H001 pln P1 P2 P3

A cylinder can be defined by

shpe H001 cyl P1 P2 10.5

120

were 10.5 is the radius. A cone can be defined by

shpe H001 con P1 P2 10.5 2.

were 10.5 is the radius at point P1 and 2. at point P2. A torus can be defined by

shpe H001 tor P1 10.5 P2 2.0

were 10.5 is the radius at point P1. Point P2 lies on the torus axis and 2.0
is the radius of the tube. A sphere can be defined by

shpe H001 sph P1 10.5

were 10.5 is the radius at point P1. If automatic name generation is desired,
then use ”!” instead of a name. See also “qshp” for the mouse controlled defi-
nition of shapes. It should be mentioned that all shapes are actually nurbs and
that internally all nurbs which are used by surfaces are actually referenced by
a shape as an interface.

Remark: A further shape type exists which links a nurbs to a surface defi-
nition. Such a shape will be automatically generated when a nurbs is finished
by the “END” parameter using the same name as the nurbs. This shapes will
not be written to a file but using the prnt command will list them:

shpe N001 NURS N001

9.128 split

’split’ [[<set> <set>] [’nos(eparation)’|’e’]] |[<line> <point>]

This keyword is used to split lines, surfaces, bodies and elements stored in a first
set by surfaces or shapes given in a second set. Also a single line can be splitted
by a given point (see “pnt” how to generate a point on a line). It is advisable
to split only elements or geometry. Otherwhise the performance is very poor.

So far only tetraeder elements (in the first set) can be splitted by surfaces,
faces or shapes (referenced by the second set). The splitted tetraeder elements
will be replaced by new tetraeder- and pentaeder elements. It can be used to
cut out parts of the mesh to be either used directly in other models or which
can be remeshed with tets based on an stl-file derived from them. Or it can be
used to apply damages to a structure. See “How to map loads” in the appendix
on how to map loads to the new created nodes from the original mesh. The
use of parameter ’e’ just stores the elements which would be splitted in the set
’+eorig’ but prevents the splitting of the elements:

split elset shape e

121

Figure 10: The shape types and its symbols together with an illustrating mesh

When bodies should be splitted then only one body per split command is
currently possible. But only if the split would lead to exactly two parts. Splitting
of several bodies at once will not create new bodies. Use several split commands
instead. If unexpected results occur the user might use the option ’nos’ to check
the splitting of surfaces without the steps of separation and distribution to two
bodies.

Sometimes the splitting of surfaces results in lines which do not look as
expected. The reason is usually a insufficient resolution of the triangles used
for the representation of the surfaces. These triangles are generated or updated
before the splitting happens and they are the basis for the splitting (the rep
command does the same and the result can be viewed with “plot si all”). The
user should increase the line division with qdiv and the inner resolution with
elty or qmsh before he starts the next attempt (it is advisable to save the model
before the split command is used).

When using the parameter ’noseparation’ (first 3 chars are significant)

split surfset shape nos

the resulting surfaces will still be connected by the new lines created by the

122

splitting. And they will eventually share a common NURBS. So if one of this
surfaces is deleted it is necessary not to delete the related NURBS as well since
otherwhise all remaining surfaces will lose their internal definition! Splitted
surfaces can be combined again with “qmsh”.

9.129 stack

’stack’ on|off|free

Several functions which return values to the user might now place them also on
a software-stack (used by area,dist,ds,enq,gtol,length,prnt,valu,volu and many
more). The “valu” command is able to read this values from the stack and place
them in variables. The ’free’ parameter will empty the stack but does not open
or close it.

See also “if” and “while”.

9.130 steps

’steps’ <value>

This keyword is used to define the number of different colors in the post-
processor mode. The default is 21. The user might use this command to store
his personal setting in the “.cgx” file in his home directory. See also ”max”.

9.131 stop

’stop’

Stops reading of the actual command file and gives the user the opportunity to
work interactively until he resumes reading with “cont”. It is possible to update
the command file after the stop command.

9.132 subm

’subm’ <submenuName> <name> <command>

This keyword is used to add a cgx command line to the menu like ”menu”. The
difference is that this command creates or extends a submenu which allows the
user to bundle related commands. This subm commands are usually stored in
a “.cgx” file in the home directory to link them to the menu during startup.

9.133 surf

’surf’ <name(char<9)>|’!’ [<set>|<nurbs>]|<shape>] | ->

[<nurbs>]|<shape>|’blend’] <line|lcmb> <line|lcmb> (etc. 3 to 5 times).

123

This keyword is used to define or redefine a surface. It is a more convenient
way to define a surface than the command gsur. Either individual lines or a
set of lines (including optionally one shape or nurs) can be specified. To be
meshable with structured elements it requires 3, 4 or 5 edges (lines or lcmbs).
To be meshable with tr3u or tr6u it requires either to be planar or to reference a
shape or nurbs which can be provided also in a second call with this command.
The mouse controlled way to define surfaces is to use the command qsur. If
the name of the surface should be automatically generated, then just type ”!”
instead of a name. See also “gsur” which allows the assignment of a shape or
“qshp” which allows the interactive assignment of a shape or nurbs to a surface.

9.134 swep

’swep’ <set> <set> [’scal’ <fx> <fy> <fz> <P0>|<div> [a]]|

[’tra’ <dx> <dy> <dz> <div> [a]]|

[’rot’ <p1> <p2> <alfa> <div> [a|&n]]|

[’rot’ ’x’|’y’|’z’ <alfa> <div> [a|&n]]|

[’rot’ <p1> ’x’|’y’|’z’ <alfa> <div> [a|&n]]|

[’rad’ <p1> <p2> <dr> <div> [a]]|

[’rad’ ’x’|’y’|’z’|’p’<pnt> <dr> <div> [a]]|

[’rad’ <p1> ’x’|’y’|’z’ <dr> <div> [a]]|

[’nor’ <dr> <div> [a]]|

[’mir’ <P1> <P2> <div> [a]]|

[’mir’ ’x’|’y’|’z’ <div> [a]]|

[’mir’ <P1> ’x’|’y’|’z’ <div> [a]]

This keyword is used to sweep entities into the next higher dimension. Sweeping
a point will create a line, sweeping a line will create a surface and sweeping
a surface will create a body. Shell elements will be expanded into Volume
elements. The ’div’ parameter defines how much elements will be created in the
sweep direction. Existing results will be applied to the new nodes. Important:
The “trfm” command must be used after the sweep operation and not before.

At first a copy of the first set (see seta and copy) will be created. The copy
of the master-set is included in the second set. Then the connecting lines and
surfaces are created and at last the bodies. The divisions of the new lines be-
tween set1 and set2 is specified with the parameter ”div” or the default is used.
Existing sets are extended by the copied entities if the last parameter includes
the character “a” (append). Rotational sweeped lines create nurbs related sur-
faces if the last parameter includes the character “n”. Several transformations
are available. For example scal creates a scaled copy, the scaling factors fx, fy,
fz could be chosen independently,

swep part1 part2 scal 2
swep part1 part2 scal 1 1 2 P0

tra will create a copy and will move it away by the vector dx, dy, dz and the

124

optional parameter ’a’ will assign the new entities to sets were the mother of
each entity is included (see “setl” on how to lock and therefore exclude certain
sets from that behaviour),

swep set1 set2 tra 10 20 30 a

nurbs related surfaces will be created if “a” is followed by “n” or a sole “n”
is used in a rotational sweep,

swep set1 set2 rot 10 20 30 an

rot will create a copy and will move it around the axis defined by the points p1
and p2 by ’alfa’ degrees (the connecting lines will be of type arc below 180 deg,
above a spline),

swep set1 set2 rot p0 px 20.

or the axis of rotation is given by specifying one of the basis coordinate axes:
swep set1 set2 rot x 20.

or just one point and a vector of rotation is given by specifying one of the
basis coordinate axes: swep set1 set2 rot p1 x 20.

rad will create a copy and uses the same transformation options as ’rot’ or
will create a spherical section if just a single point is defined (be aware of the
mandatory ’p’ in front of the point name),

swep sphere1 sphere2 rad pP0 10.

nor will create a copy and will move it away in the direction of the averaged
normal local vector. This requires information about the normal direction for
each entity. Nodes will use associated element faces and geometric entities will
use the element faces, surfaces or shapes which must be stored with them in the
set1. It should be noted that faces from volume elements stored in set1 will be
used to generate shell elements. This elements will then be extruded in normal
direction into 3D elements,

swep set1 set2 nor 1.2 6 a

mir will create a mirrored copy. The mirror-plane is placed normal to the
direction running from P1 to P2 and placed at P2,

swep section1 section2 mir p1 p2

as with ’rot and ’rad’ additional transformation options are available:

125

swep section1 section2 mir P1 x

places the mirror at P1 with its normal direction in ’x’ direction

swep section1 section2 mir x

Places the mirror in the origin with its normal direction in ’x’ direction.

9.135 sys

’sys’ <shell-command parameters>

This keyword is used to issue any shell command (unix or dos shell). For ex-
ample to move files created by the ’send’ command to certain file names or/and
locations and to start the analysis. On certain platforms cgx will not wait for
the completition of the command if the ’&’ key was provided as the last argu-
ment of the command. Otherwhise cgx waits until the command was completed.

WARNING:

If you use CGX to open an untrusted .fbd file downloaded form the internet, it
might delete all your files or do whatever it wants as long as cgx has the neces-
sary rights. Even an honest but carelessly written .fbd file could be destructive
if it makes incorrect assumptions about the locations of files. For example, by
clearing the contents of a directory to clean up, it might delete important files
on someone else’s computer.

Therefore before you open a foreign command file (usually with the ending
.fbd or .fbl) scan for ”sys” and evaluate the command line.

To activate the “sys” command permanently add

’allow_sys’

in your configuration file (’.cgx’ in your home directory).

9.136 test

’test’ [’d’|’v’|’n’|’e’|’p’|’l’|’c’|’s’|’b’|->

’S’|’L’|’se’|’sh’ <entity-name>] | ->

[’file’ <file> [<">string<">]] | ->

[’i’ <set1> <set2>] | ->

[’o’ <set>|<node>]

A boolean opperation. Usually tests the existence of a given entity (watch the
’\’ which prevents the value beeing replaced by its content!):

test v \value

126

And it checks if at least one node included in set1 is inside the elements in-
cluded in set2:

test i nodeset elemset (returns TRUE or FALSE and the amount of nodes inside
the elements of set2)

Or it tests the observability ’o’ of a certain node under the given orientation
of the model. The node can be given as a member of a set or directly by its
node-nr. The existence of a file or the existence of a certain string in a given
file can be checked:

test file filename.txt “HELLO”

The command returns TRUE or FALSE and writes it to the ”stack”.

9.137 thrs

’thrs’ <set> <value> ’h’|’l’|’o’ [’t’]

Compiles all nodes from the given set which have values of the actual dataset
above (h) or below (l) the given value (stored in set ’+THRS’). The related
elements are collected as well. All unconnected element-clusters from that set
together with their related nodes are stored in separate sets (+grp1..+grpn).
This sets are displayed in a certain mode were only the dots are visible (see
“view”):

thrs all 600. h

When the parameter ’t’ is used the local nodes referencing maximum or min-
imum values are stored in additional sets (+grpN1..+grpNn) and displayed in
addition:

thrs all 600. h t

This node attached texts can be manipulated with “qtxt” or with “txt”.
To display the full model again in the filled mode:

thrs o

9.138 tra

’tra’ ’f’|’u’|’d’|’l’|’r’ <relative-distance>

This keyword is used to move the model in the window. For example

127

tra u .1

will move the model 0.1 times the model dimensions upwards. The meaning
of the other letters is forward f, down d, right r, left l.

9.139 trfm

’trfm’ ’rec’|’cyl’ [’x’|’y’|’z’] ->

[<first-Dataset-Nr> [<last-Dataset-Nr>]]

Changes dataset entities from one coordinate system to another. The option
’cyl’ transforms the global results to cylindrical and ’rec’ from cylindrical to
global cartesian. In both cases the axis of the cylindrical system must be pro-
vided. Optionally the first and the last dataset of a range of a unique type can
be specified. The current dataset is selected if no dataset is specified. In any
case a dataset parameter will be created which stores the type of the applied
transformation. It will show up after re-selecting the dataset in the menu entry
’dataset->entity->parameter’ and will be written by the ”send” command if the
frd-format is used (see also ”ds” and Parameter Header Record).

The transformation into the cylindrical system takes place in a way that
tensors and vectors are transformed into a new local cartesian system which
is alligned with the directions of a true cylindrical system. In this way the
dimensions are maintained (for example the displacement in angular direction
is not transformed into an angle but into a displacement in tangential direction).

The transformation from a cylindrical into a cartesian system works accord-
ingly. Therefore successive ”cyl” and ”rec” commands are permitted. This
command sequence can be used to rotate the model with its datasets in the
correct way which means that all results are also rotated.

Example; Choose the desired dataset (and an entity) with the menu or the
’ds’ command. Then type

trfm cyl z

to transform the dataset from a rectangular system into a cylindrical around
the global z axis. Type

trfm rec z

to transform from cylindrical (which exists after the first call) to the rectan-
gular system (which re-produces the original values).

To transform several datasets of the same type (!) at once:

128

trfm rec z 1 10000

This command transforms all datasets starting with the first to the last if
the last dataset has a number below 10001 (but only the ones of the same type
as the 1st!).

9.140 txt

’txt’ ’!’|<set>|<node> ->

[’n’|&’v’|&’t’|&’e’|&’f’|&’i’|&’s’|&’l’|&’r’] ->

[<dx> <dy>] [<"description">]

Creates node-attached texts, see figure 8). The texts are generated but not
displayed. The commands ”plot” and ”plus” have to be used for that purpose
(the color ’n’ is recommended since it is good visible over the white background
as well as over the colors of most colormaps). The texts can be deleted with
”del”. See also ”qtxt” for the interactive command.

The texts comprise of a node-nr and the value and an user defined descrip-
tion. The node-nr can be deselected by providing the key ’n’, the value can be
deselected with key ’v’ and the description with key ’t’. The exponential format
of the value can be selected with ’e’, float with ’f’ and integer with ’i’. The left
bound position can be defined with ’l’, right bound with ’r’. All this flags can
be combined.

The texts are attached to the nodes stored in a set;

txt nodset

or to a single node:

txt nodenr

If the ! character is used instead of a setname or a node number then a new set
with the name “-txt” will be created and all nodes with attached texts will be
stored there and the texts will be redefined:

txt !

Regard the following examples:

txt nodset fn

deselects the node-nr and selects the float format for the value.

129

The text is placed left bound if using the parameter ’l’:

txt nodset l

An eventually given vector dx,dy is scaled to the left bound position:

txt nodset l 0.1 0.5

Using an infinite gradient in the left- or right bound mode

txt nodset l 0. 0.5

will place the texts in the upper corner.
If not right or left bound the optional dx,dy values define an offset (normal-

ized coordinates) to the actual node position on the screen where the origin is
in the lower left corner:

txt nodset 0.1 0.2

The offset “0 0” will bring them back to the node position.
The description must be given in quotation marks:

txt nodenr “hello world”

Per default the description is placed at the trailing position. The key ’s’ shifts
it to the front. Be aware that descriptions are persistend and can only be over-
written. To delete descriptions they have to be overwritten with an empty string:

txt nodenr “”

9.141 typs

’typs’

The result format (frd) allows to assign element types. One element can only
belong to one type. This command creates sets and stores all elements of a
certain type in a certain set called “+typ[nr]”. See “Element Definition Block”
how this applies to the result format (frd).

9.142 ucut

’ucut’

If a section through the mesh was created with the ”cut” or ”qcut” command
then this command will delete the cut and display the un-cutted structure.

130

9.143 ulin

’ulin’ <string>

This keyword is used to define an underline. This commend will show up in
the menu area of the main window below the file name. The filename can be
overwritten with ”capt”.

9.144 val

’val’ (The parameters are the same as for ’valu’->

except that masking with ’\’ is supported)

This command has the same functionality and accepts the same parameters as
“valu” with one exception: The cgx command parser will substitute the param-
eters by previously defined values before the ’val’ command itself is executed.
The substitution can be suppressed with a leading ’\’ before a parameter. Dur-
ing execution it will again scan each parameter for expressions which match the
name of a value and will replace the parameter by the content of the value. This
way two steps of substitutions of nested values are possible:

valu a b

valu b 1.

with valu only one substitution step is performed:

valu c a

prnt v c

-> b

with val two substitution steps are performed:

del v \c

val c a

prnt v c

-> 1.

Please study the example ”Data storage in a user dataset”.

9.145 valu

’valu’ <[!]name> [[’push’ [<splitkey>]]|[’pop’ [nr]]] | ->

[<value> [’?’ [<\"string\">]] | ->

[’&’|’*’|’/’|’+’|’-’|’abs’|’max’|’min’|’pow’|’log’|->

’log10’|’sqr’|’sin’|’cos’|’tan’|’asin’|’acos’|’atan’| ->

’int’|’float’|’exp’ [name|<const> name|<const>]]]

WARNING: With that command the meaning of a command can be changed
and unintended effects are possible. For example if the character ’l’ is used as a
value it is not longer possible to use the ’plot’ command to display lines without
masking the ’l’. So it is a good idea to use only names using several characters
and avoid the names of existing commands.

131

This command generates an entity (called value) which basically stores a
string of characters. Most characters are valid but no white-spaces are accepted
from the command line. The command allows simple calculations and string
operations. It is able to read from- and write to the stack. The cgx command
parser will scan each parameter of each command for expressions which match
the name of a value and will replace the parameter by the content of the value.
After that the command is executed. For example

pnt P0 xvalue 0. 0.

uses the value ’xvalue’. If the user has previously defined the value with:

valu xvalue 1.24

then the command-parser will replace ’xvalue’ by ’1.24’ in the ’pnt’ command.
For convenience this general substitution works for all commands except the

’valu’ command! The command parser will not scan the parameters of the ’valu’
command and will not substitute them. Instead this substitution is performed
by the ’valu’ command itself. The command does not treat its own name as a
value and will not substitute it by previously defined values. Therefore nested
levels of ’values’ are not solved. However if this functionality is needed the “val”
command can be used.

ATTENTION: To suppress the substitution of a certain value it has to be
masked by a leading ’\’. For example the command:

del v \xvalue

will delete the value xvalue itself. Without the masking xvalue would be re-
placed by its content ’1.24’ and since no value named ’1.24’ exists, nothing will
happen.

The content of a value can be defined by the user

valu arg1 1.24

or derived from the stack previously filled by a command

valu arg1 pop

if the ”stack” was activated. A certain number on the stack can be addressed
with

valu arg1 pop 2

were the ’2’ means that 2 successive ’pops’ are executed. In this way the second

132

value on the stack can be loaded at once.
Values can be added to a set

seta valset v all

and can then be deleted by zapping “zap” the set storing the values.
Values can be written to the stack when the ’push’ parameter is used:

valu arg1 push

A white-space separated string stored in a “valu” will be written to the stack in
separate sub-strings. With this method single pieces of a white-space separated
string can be splitted and stored in separate values:

stack on

opens the stack

valu complicatedString push

splits the string stored in ’complicatedString’ and writes the single pieces to
the stack. The command

valu subString pop 3

loads the 3rd substring into the varible ’subString’. Other splitting charac-
ters can be used when this character follows the push key-word:

valu string push .

splits the string at each occurence of “.” and writes the pieces to the stack.
The command is able to perform simple calculations like

valu result * arg1 arg2

’result’ will store the product from ’arg1’ and ’arg2’. The two arguments arg1
and arg2 may be other ’values’ or constant numbers. That means that a direct
multiplication of two numbers or a value with a number is possible. During the
calulation the strings are converted to double precision numbers and the result
is stored as a string representing an exponential number. The ’int’, ’float’ and
’exp’ convert between integer, floating point and exponential format:

valu result int result

The ’?’ operator is used to request user input:

133

valu string ? “user message:”

The command presents the user message (between apostrophes) and waits for
user input. Please type into the terminal. Usually this requires to leave the
graphics window and click into the terminal from which cgx was started.

The ’&’ operator is used to concatenate two strings:

valu string3 & string1 string2

The string1 and string2 might be values or constant strings.
The values are written to the fbd file unless its name starts with a ’!’.
The sections ”How to write values to a file”, ”How to process results” and

”How to generate a user dataset” explain more about the use of values.

9.146 view

’view’ ’fill’|’line’|’point’ [<value>]|’cl’ ’off’|

’edge’ [<value>|’off’]|’elem’ [’off’]|’surf’|’volu’|

’front’|’back’|’vec’ [’off’]|’disp’ [’off’|’keep’]|

’bg’ [’w’|’k’]|’sh’ [’off’]|’ill’ [’off’]|’rul’ [’off’|<string>]

Command to control the graphic output. This command is intended for batch-
mode. See also ”Viewing” for the menu controlled functions.

• ”cl” The command line is shown in the graphic’s window.

• ”fill” Element-faces are filled

• ”line” Elements are displayed as fireframes

• ”point” Element-edges are displayed as points with a pixel-width of ’value’

• ”edge” triggers the display of the model edges with a pixel-width of ’value’

• ”elem” triggers the display of the element edges. They are deselected with
the additional parameter ”off”.

• ”surf” and ”volu” are used to display the structure either only by it’s
outer skin (surf) or by drawing all elements (volu).

• ”front” and ”back” define which side of the structure should be drawn.
Either the side which faces the user or the back-side. If the back-side is
displayed then internal structures are visible.

• ”vec” triggers the vector mode. All vector-entities like displacements are
displayed with arrows pointing in the direction of the vector and with a
length proportional to the value of the vector. See ”Toggle Vector-Plot”
for a detailed description of the equivalent menu-function.

134

• ”disp” will show the deformed structure based on a formerly selected dis-
placement dataset (no entity must be selected). See ”Toggle Add-Displacement”
for a detailed description of the equivalent menu-function. Switched off
with ”off”. Or add the displacements permanently with “keep”. Now a
second displacement dataset could be added. Be aware that the scaling of
the displacement must be done after the ’view disp’ command and before
the ’view disp keep’ command.

• ”bg” Without second parameter toggles the background colour. The sec-
ond parameter ’w’ forces white while the parameter ’k’ forces black as
background colour.

• ”sh” Shaded results are shown. Switched off with ”off”.

• ”ill” Illuminale the backface of the elements. Switched off with ”off”.

• ”rul” triggers the display of a ruler bar. Switched off with ”off”. A string
containing the unit can be given: “view rul mm”.

9.147 volu

’volu’ <set>

This keyword is used to calculate the volume and the center of gravity of a set
of volume-elements. If an ccx-input file with density data was read then the
mass will be also calculated. If a ’dataset’ is active then an averaged value is
calculated.

The command writes to the ”stack”.

9.148 while

’while’ <value>|<const> ’eq’|’ne’|’==’|’!=’|’<’|’>’ <value>|<const>

A command to compare two values (’valu’ or constant numbers). If the compare
is True the following commands are executed until the ’endwhile’ command is
found. This procedure is repeated until the compare is False.

while arg1 == arg2

will repeat the commands between ’while’ and ’endwhile’ until the numerical
value stored in ’arg1’ is not equal to the numerical value stored in value ’arg2’.
The values are locally converted to ’float’ format for the numerical comparison.
The ’eq’ and ’ne’ compare strings and should not be used for numerical values
since no conversion to a common format is done. Two strings are equal if they
have the same length and all characters are equal.

See also “if”, “valu”, “stack” and “How to run cgx in batch mode”.

135

9.149 wpos

’wpos’ <xp> <yp>

Positions the window on the screen were xp and yp are the coordinates in pixel
relative to the left upper corner. This command takes no effect during reading
and execution of a batch file. It will be executed in the glut event loop (the glut
library [2] for window management and event handling). The user might store
his personal start-up location in the “.cgx” file in his home directory.

9.150 wsize

’wsize’ [RETURN]|’f’]|[<xp> <yp>]

Size of the window were xp and yp are the size in pixel. Without argument the
size is the initial size and with the argument ’f’ (fullsize) the screen resolution
is used. This command takes ONLY effect during reading and execution of a
batch file IF it is written in the very first line. Otherwhise it will be executed
after reading of the batch file in the glut event loop (the glut library [2] for
window management and event handling) which means that the program has
to go into the interactive mode to take effect. The user might store his personal
start-up window size in the “.cgx” file in his home directory.

9.151 zap

’zap’ <set>

This keyword is used to delete all entities of a set and the set itself. All depending
entities will be deleted as well.

9.152 zoom

’zoom’ [<scale>]|[<p1x> <p1y> <p2x> <p2y>]

This keyword is used to scale the model in the window. For example

zoom 2

will increase the size of the representation of the model by a factor of 2. A
certain region of the model can be specified with two corner points of an imagi-
nary rectangle. The coordinates are relative to the graphic-window which has its
origin at the left/lower corner and as a fraction of the edge-lengths. For example

zoom 0. 0. 0.5 0.5

will display the third quadrant of the window scaled by a factor of 2.

136

10 Element Types

Node numbering of the elements and the type numbers used in the Result For-
mat (frd-file). The solvers might use different node-numbering rules.

1

2

2 node beam element (be2, type 11)

137

1

2

3

3 node beam element (be3, type 12)

21

3

3 node shell element (tr3, tr3u, type 7)

138

21

3

4

56

6 node shell element (tr6, type 8)

21

34

4 node shell element (qu4, type 9)

139

21

34

5

6

7

8

8 node shell element (qu8, type 10)

1

2

3

4

4 node tet element (type 3)

140

1

2

3

4

5 6

7

8 10

9

10 node tet element (type 6)

21

34

5 6

78

8 node brick element (he8, type 1)

141

8

5

2

3

6

7

9

11

13
14

1516

17 18

19

20

4

1

12

10

20 node brick element (he20, type 4)

1

6

5

4

3

2

��

�
�
�
�

��

����

�
�
�
�

6 node penta element (pe6, type 2)

142

2

3

4

5

1

6

12

14

15

13

11

7
8

9

10
�
�
�
�

����

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��

���
�
�
�

��
��
��
��

�
�
�
�

��

�
�
�
�

15 node penta element (pe15, type 5)

11 Result Format

Listing of the mesh- and the nodal results format. The data are stored in
fixed format. Node-, element-definitions and results might be in ascii or binary
coding. The ascii format is able to store element- and node-numbers up to
’99999’ in the short form or up to ’9999999999’ in the long form. An example
for the short form is shown below:

> 1Ctest !’’1C’’ defines a new calc of name ’’test’’

> 1UDATE 26.01.2000 !’’1U’’ stores user job-informations

> 2C !’’2C’’ starts a block of node coordinates

> -1 1 0.00000E+00 0.00000E+00 0.00000E+00 ! 1. node

> -1 2 0.10000E+01 0.00000E+00 0.00000E+00 ! 2. node

> -3 !end of the current block

> 3C !’’3C’’ starts a block of elem definitions

> -1 1 4 0 0!first elem, type of that elem is 4 (he20)

> -2 1 2 3 4 13 14 15 16 5 6 7 8 ..

> -2 12 17 18 19 20 !twenty nodes defining that element

> -1 ...

> -2 ...

> -2 ...

> -3 !end of the current block

> 1PHID 10 !defines a parameter HID value 10

> 100CL101 !’’100C’’ starts a user defined result block

> -4 DISP 3 1 !Attribute Header Record (Dataset)

> -5 D1 1 2 1 0 !Component Def. Record (Entity)

> -5 D2 1 2 2 0

> -5 D3 1 2 3 0

> -1 1 0.00000E+00 1.00000E+00 1.00000E+00 !Nodal Values

143

> -1 2 1.00000E+00 0.00000E+00 0.00000E+00

> -3 !end of the current block

> 9999 !end of data

The binary format applys only for data lines and the “end of the current block”
line (-3), which is omitted. All other lines are the same.

11.1 Model Header Record

To access the data use “prnt info”.

Purpose: Defines the name of the model

Format:(1X,’ 1’,’C’,A6)

Values: KEY, CODE, NAME

11.2 User Header Record

To access the data use “prnt usr”. To manipulate data use “asgn usr”.

Purpose: Stores additional user informations regarding the job

ie. user id, creation date, model informations

Format:(1X,’ 1’,’U’,A66)

Values: KEY, CODE, STRING

11.3 Nodal Point Coordinate Block

Nodes can be written with the “node” command.

Purpose: Defines the nodal coordinates

1. Record:

Format:(1X,’ 2’,’C’,18X,I12,37X,I1)

Values: KEY, CODE,NUMNOD, FORMAT

Where: KEY = 2

CODE = C

NUMNOD = Number of nodes in this block

FORMAT = Format indicator

0 short format

1 long format

2 binary format, coordinates float

3 binary format, coordinates double

Following records (ascci, FORMAT=0 | 1):

Short Format:(1X,’-1’,I5,3E12.5)

144

Long Format:(1X,’-1’,I10,3E12.5)

Values: KEY, NODE, X,Y,Z

Where: KEY = -1

NODE = node number

X.. = coordinates

Following records (binary, FORMAT=2):

Format:(int NCOMPS*float)

int and float are ansi-c data-types

Values: NODE, X,Y,Z

Where:

NODE = node number

X.. = coordinates

Following records (binary, FORMAT=3):

Format:(int NCOMPS*double)

int and double are ansi-c data-types

Values: NODE, X,Y,Z

Where:

NODE = node number

X.. = coordinates

Last Record (only FORMAT=0&1 (ascii), omitted for FORMAT=2&3):

Format:(1X,’-3’)

Values: KEY

11.4 Element Definition Block

Elements can be written with the ”elem” command.

Purpose: Defines the topology of the elements

1. Record:

Format:(1X,’ 3’,’C’,18X,I12,37X,I1)

Values: KEY, CODE,NUMELEM, FORMAT

Where: KEY = 3

CODE = C

NUMELEM= Number of elements in this block

FORMAT = Format indicator

0 short format

1 long format

2 binary format

Following records (ascci, FORMAT=0 | 1):

The following block of records must be repeated for each element:

The first record initializes an element definition:

145

Short Format:(1X,’-1’,I5,3I5)

Long Format:(1X,’-1’,I10,3I5)

Values: KEY, ELEMENT, TYPE, GROUP, MATERIAL

Where: KEY = -1

ELEMENT = element number

TYPE = element type, see section ’’Element Types’’

and command ’’typs’’

GROUP = element group number, see command ’’grps’’

MATERIAL= element material number, see command ’’mats’’.

Then the nodes in the correct order have to follow:

Short Format:(1X,’-2’,15I5)

Long Format:(1X,’-2’,10I10)

Values: KEY,NODE,NODE,NODE,NODE, ...

Where: KEY = -2

NODE = node number

Additional lines must follow if more nodes are used.

Following records (binary, FORMAT=2):

Format:(4*int nodes*int)

int and float are ansi-c data-types

Values: ELEMENT, TYPE, GROUP, MATERIAL,NODE,NODE,NODE,NODE, ...

Where:

ELEMENT= element number

TYPE = element type, see section ’’Element Types’’

and command ’’typs’’

GROUP = element group number, see command ’’grps’’

MATERIAL= element material number, see command ’’mats’’.

NODE = node number

Last Record (only FORMAT=0 | 1 (ascii), omitted for FORMAT=2):

Format:(1X,’-3’)

Values: KEY

11.5 Parameter Header Record

To access the data use “prnt par”. To manipulate data use “ds” option r.

Purpose: Stores informations related to datasets.

ie. bondary conditions and loads

They should consist of a keyword and a value

Format:(1X,’ 1’,’P’,A66)

Values: KEY, CODE, STRING

146

Where: KEY = 1

CODE = P

STRING = Keyword Value (ie: FORCE 1000.)

11.6 Nodal Results Block

To access the data use “ds”. This command is also used to modify or create
datasets. Values at nodes can be written with the “node” command.

Purpose: Stores values on node positions

1. Record:

Format:(1X,’ 100’,’C’,6A1,E12.5,I12,20A1,I2,I5,10A1,I2)

Values: KEY,CODE,SETNAME,VALUE,NUMNOD,TEXT,ICTYPE,NUMSTP,ANALYS,

FORMAT

Where: KEY = 100

CODE = C

SETNAME= Name (not used)

VALUE = Could be frequency, time or any numerical value

NUMNOD = Number of nodes in this nodal results block

TEXT = Any text

ICTYPE = Analysis type

0 static

1 time step

2 frequency

3 load step

4 user named

NUMSTP = Step number

ANALYS = Type of analysis (description)

FORMAT = Format indicator

0 short format

1 long format

2 binary format, values float

3 binary format, values double

2. Record:

Format:(1X,I2,2X,8A1,2I5)

Values: KEY, NAME, NCOMPS, IRTYPE

Where: KEY = -4

NAME = Dataset name to be used in the menu

NCOMPS = Number of entities

IRTYPE = 1 Nodal data, material independent

2 Nodal data, material dependant

3 Element data at nodes (not used)

147

3. Type of Record:

Format:(1X,I2,2X,8A1,5I5,8A1)

Values: KEY, NAME, MENU, ICTYPE, ICIND1, ICIND2, IEXIST, ICNAME

Where: KEY = -5

NAME = Entity name to be used in the menu for this comp.

MENU = 1

ICTYPE = Type of entity

1 scalar

2 vector with 3 components

4 matrix

12 vector with 3 amplitudes and 3 phase-angles in

degree

14 tensor with 6 amplitudes and 6 phase-angles in

degree

ICIND1 = sub-component index or row number

ICIND2 = column number for ICTYPE=4

IEXIST = 0 data are provided

1 data are to be calculated by predefined

functions (not used)

2 as 0 but flaged by cgx

ICNAME = Name of the predefined calculation (not used)

ALL calculate the total displacement if ICTYPE=2

This record must be repeated for each entity.

4. Type of Record: (not used)

This record will be necessary in combination with the request for

predefined calculations. This type of record is not allowed in

combination with binary coding of data.

Format:(1X,I2,2I5,20I3)

Values: KEY,IRECTY,NUMCPS,(LSTCPS(I),I=1,NUMCPS)

Where: KEY = -6

IRECTY = Record variant identification number

NUMCPS = Number of components

LSTCPS = For each variant component, the position of the

corresponding component in attribute definition

5. Type of Record:

The following records are data-records and the format is repeated

for each node.

In case of material independent data

- ascii coding:

Following records (ascci, FORMAT=0 | 1):

Short Format:(1X,I2,I5,6E12.5)

148

Long Format:(1X,I2,I10,6E12.5)

Values: KEY, NODE, XX..

Where: KEY = -1 if its the first line of data for a given node

-2 if its a continuation line

NODE = node number or blank if KEY=-2

XX.. = data

- binary coding:

Following records (ascci, FORMAT=2):

(int,NCOMPS*float)

int and float are ansi-c data-types

Following records (ascci, FORMAT=3):

(int,NCOMPS*double)

int, float and double are ansi-c data-types

Values: NODE, XX..

Where:

NODE = node number

XX.. = data

In case of material dependant data

REMARK: Implemented only for NMATS=1

- first line:

Short Format:(1X,I2,4I5)

Long Format:(1X,I2,I10,3I5)

Values: KEY, NODENR, NMATS

Where: KEY = -1

NODENR = Node number

NMATS = Number of different materials at this node(unused)

- second and following lines:

Short Format:(1X,I2,I5,6E12.5)

Long Format:(1X,I2,I10,6E12.5)

Values: KEY, MAT, XX, YY, ZZ, XY, YZ, ZX ..

Where: KEY = -2

MAT = material-property-number if KEY=-2 (unused)

XX.. = data

Last Record (only FORMAT=0 | 1 (ascii), omitted for FORMAT=2):

Format:(1X,’-3’)

Values: KEY

12 Pre-defined Calculations

Listing of the automatically calculated additional results.

149

12.1 Von Mises Equivalent Stress

Entity name: Mises

σvM =
1√
2

√

(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6τ2yz + 6τ2zx + 6τ2xy

12.2 Signed Von Mises Equivalent Stress

Entity name: sgMises
Uses the signum of the absolute greatest principal stress σ.

12.3 Von Mises Equivalent Strain

Entity name: Mises

ǫvM = 2/3 ∗ 1√
2

√

(ǫx − ǫy)2 + (ǫy − ǫz)2 + (ǫz − ǫx)2 + 6ǫ2yz + 6ǫ2zx + 6ǫ2xy

12.4 Signed Von Mises Equivalent Strain

Entity name: sgMises
Uses the signum of the absolute greatest principal strain σ.

12.5 Principal Stresses

Entity names: PS1, PS2, PS3, worstPS

The principal stresses σ are named PS1, PS2, PS3. From the three principal
stresses σ the absolute maximum value will be calculated and named worstPS.
For example if a node has the three values 100, 0 and -110 MPa then -110 MPa
would be shown. The three principal stresses σ1 σ2 σ3 are derived from the
following equation:

σxx − λ σxy σxz

σyx σyy − λ σyz

σzx σzy σzz − λ

nx
ny
nz

 =

0
0
0

They are given by the three roots of the equation (stress tensor is symmetric:
σxy = σyx etc.):

σ3 − (σxx + σyy + σzz)σ
2 + (σxxσyy + σyyσzz + σzzσxx − σ2

xy − σ2

yz−

σ2

zx)σ − (σxxσyyσzz + 2σxyσyzσzx − σxxσ
2

yz − σyyσ
2

zx − σzzσ
2

xy) = 0

12.6 Principal Strains

The same algorithm is applied to the strain tensor as outlined for the stress in
”Principal Stresses”.

150

12.7 maxShear Stresses

Entity name: maxShear
This is the maximum shear-stress:

maxShear = 0.5 ∗max((σ1 − σ3), (σ1 − σ2), (σ2 − σ3))

12.8 Contact Stresses

Entity name: Snorm
This is the stress component normal to the surface to which the node belongs.

12.9 Contact Strain

Entity name: Enorm
This is the strain component normal to the surface to which the node belongs.

12.10 Cylindrical Stresses

Entity names: SXX, STT, SRR, SXT, STR, SRX

The Cylindrical Stresses are truly cartesin stresses in a cylindrical system re-
garding the node-position relative to the axis of the cylindrical system. The
stress-tensor is rotated individually for each node. They are calculated on de-
mand (see trfm).

12.11 Weighted Error

Entity name: vMR
The element stress gradient based estimated error (requested with ’ERR’ in ccx)
is multiplied by the vMises ratio:

vMR = STR ∗ vMisesStress(node)/vMisesStress(model)

13 Meshing rules

The mesher geneates at first nodes on points and then on lines between its end
points. That means that a line which is supposed to be meshed with a 3 node
beam element generates and references only 1 node! Then nodes in the interior
of surfaces are generated. So when a surface is made of 4 lines with each of a
division of 2 then the surface generates and references just one node! At last
the bodies generate nodes in its interior. Again, if the body uses 6 surfaces as
described before it generates and references only one node. If such a body is
stored in a set and the user needs all nodes which are used by it, it is necessary
to extend the set by the points, lines and surfaces which are used by the body.
Their nodes are then also referenced by the set. This can be done with the

151

“comp” command. The same logic is used when creating the elements (surfaces
generate shell elements and reference them, bodies generate volume elements).

If a tet mesh is required and the user meshes at first the surfaces and then
generates the tet elements using the command “mesh ’setname’ tet” only the
’setname’ and the set ’all’ reference the tet elements and the newly generated
additional nodes! So an eventual target set has to be opened by the user before
he starts the mesher. In case of unstructured meshes the mesh density of the
inner area or volume is defined with ”elty” (or ”qmsh”). Also the locking of
the surface or body is defined with that command (the element type of a locked
entity can not be changed until unlocked). The applied mesh parameters are
stored using the command ”mshp”. Usually the user does not use that command
directly, it is just written by the program to store the information.

The way the mesher works has the consequence that only bodies who share
a single common surface are connected at each node were they touch each other.
Three surfaces with their points and lines are shown in figure 11. When sweeping
this surfaces in ’y’ direction three bodies will be generated. The line L006
generates a surface between the bodies at the position of A001 and A002. Both
bodies will reference this surface and will therefore share its nodes. So all
elements will be connected at that location. But a body using the surface A005
will use a surface generated by the combined line of L001 and L002 extruded
in ’y’ direction! This surface will not be used by the bodies generated by A001
and A002 since they will use the surfaces generated by the separately extruded
lines L001 and L002. So bodies at the position of A001 and A005 will share
the nodes of the common lines and points but not of the new surfaces at the
location of line L001 (and not at the location of the new line at point D002).
In the end at some inner locations gaps will exist.

Some rules must be fulfilled before a geometry is meshable (see mesh). For
linear elements (ie. qu4 or he8), the sum of all divisions (see div) of each surface
must be even. In case of quadratic elements (ie. qu8 or he20) this sum must
be divisible by 4 without residue. Opposite edges of a given surface might have
different divisions. For example on the left side of a given surface the division
is 8 and on the right side it is only 4. But only two opposite surfaces of a body
can use this feature. These surfaces are called top and bottom surfaces. All
other surfaces of this body must have unique divisions on opposite edges. In
case of 3 sided surfaces it is necessary to apply a minimum division sufficient
for two elements along the edge. The only exception is the element tr3u (see
elty) which allows a division of one.

A body can not be meshed when the shape of the body is very far from being
brick-like. The body might be subdivided to improve the shapes of the single
ones. There is a restriction for the definition of five- or seven-sided bodies. The
first two surfaces in the body-topology (see gbod) have to be defined in the
same order. That means the first line of the first surface has to be connected
with the first line in the second surface by one of the remaining surfaces. This
is always the case if the body is a product of a ”swep” command.

152

Figure 11: unconnected bodies

14 User-Functions

The user might define his own functions to manipulate the mesh or the re-
sults with the user function stored in file ”userFunction.c”. See the command
”call” how to call a user function. The user can generate new nodes, elements
or datasets or extend or manipulate existing datasets or interfaces to other
software. The file ”userFunction.c” includes an example which calculates the
hydrostatic stress and stores the result in a new dataset. In case the user has
no access to a compiler he may solve his task by using the in build command
language. The section “User File Parser” can be used as an example.

A Known Problems

A.1 Program does not show the geometry after startup

If no ’plot’ or ’plus’ commands are included in the command files (fbd or fbl
files) then nothing might be visible after startup. Pleas use the plot command

153

’plot l all’ and ’frame’.

A.2 Program is not responding

If the program seems to hang then leave the window with the mouse pointer
and go in again. If that does not help then probably a command is waiting for
input. Stay with the mouse pointer inside the window and press the ”q” key
several times. Another very popular error is to move the mouse-pointer into
the konsole were the typed commands and the protocol is visible. Please, the
mouse-pointer MUST stay in the main-window during typing! The user might
use the menu fuction “Toggle CommandLine” or the command “view cl” to
switch the command line from the konsole to the graphic’s window.

A.3 Program generates a segmentation fault

Write a mail to the author and, if possible, add the input-file.[3].

B Tips and Hints

The following collection will give you background information and procedures
to deal with common situations.

B.1 How to change the format of the movie file

Use a shell command like convert to split up movie.gif with multiple layers into
multiple frames, as seperate jpeg files:

convert movie.gif %d.jpg

Convert any series of multiple jpeg files into WMV format with:

mencoder mf://*.jpg -mf w=800:h=600:fps=25:type=jpg -ovc lavc -lavcopts

vcodec=wmv2 -o movie.wmv

To convert a video file into avi format use this command:

mencoder <videofile> -ovc lavc -lavcopts vcodec=flv -of avi -o movie.avi

In general:To convert a video file from one format into the other, use the program
”mencoder”. It comes with the mplayer packages.

mplayer movie.wmv

154

B.2 How to get the sets from a geo- or ccx-inp file for
post-processing

Quite often it is useful to have the already defined sets from the pre-processing
or/and the calculation available when doing the post-processing of results. The
sets defined in the ccx-input file (.inp) can either be read together with the
results (.frd) at start-up:

cgx results.frd input.inp

or the user may read them during run-time

read input.inp nom

(see “read”). When it comes to the sets defined in the geo file a slightly different
approach is needed. The geo file must be read before the result file. So the user
starts cgx in the build mode

cgx -b geofile.fbd

meshes the model (see “mesh”) and then read the results

read results.frd nom

and optionally the input file. Be aware that the parameter “nom” is essen-
tial here. Use “prnt” to get an overview over the available sets.

B.3 How to define a set of entities

Some knowledge is necessary to efficiently select entities (nodes, points ..). As a
golden rule in complicated situations never try to create a set just by ”adding”
the entities to the set (see qadd). It is much better to catch a bigger group
which includes certainly the wanted ones. Then display the set with the plot
command and remove all unwanted entities with the qrem command. Entities
are selected if at least one pixel of it is inside the selection rectangle. But there
is one exception: Only the lower left corner of any text (names of points etc.)
can be selected. Surfaces can also be selected by picking its shaded interiour
(see “rep)”. You might add all lower entities (as points for example) by typing
”comp set do”. This is necessary for example if you had selected surfaces and
you want to move them in space. Only points have locations and therefore
nothing will happen unless you completed the set by the related points with
”comp” command.

There is another type of set called sequence. The data-structure is the same
but with one exception, the data keep their order in which they were selected.
This type of set is used for splines (see ”qlin” and ”line”) or in combination
with the ”graph” command if values along a path should be displayed. Use

155

”prnt sq” to list all existing sequences and use ”qseq” or ”seqa” to create them.
Up to now they are only used to store nodes and points. As sets they will be
written to a file if fbd format is specified. In this case also node-sequences can
be stored.

B.4 How to enquire node numbers and values at certain
locations

A very common problem is how to get the exact value on a node position during
post-processing. To actually get the value add the element edges to the view
(see Toggle Element Edges) and type qenq and press the RETURN key (during
typing the mouse-pointer MUST stay in the main window, do NOT move the
pointer into the konsole). Then move the mouse-pointer over the location of a
node and press the ”n” key. The node-number, the value at that node and the
location will be written in the konsole from which the cgx was started. See also
the ”enq” command for batch controlled value extraction.

B.5 How to select only nodes on the surface

Some times you need to select nodes only on the surface of the mesh. This can be
done when the mesh is displayed in the surface mode (see ”Toggle Surfaces/Volumes”)
using the menu-entry ”Show Elements With Light”. To find node positions
more easily add the element edges to the view (see Toggle Element Edges).

A different way uses the element-faces (see ”plot” with parameter ”f”). Store
the desired faces in a new set (qadd) and complete the set downwards (“comp
set do”). Check the selected nodes with “plot n setname”. Or you add all faces
at once in a new set with “seta surfs f all” before completing the set downwards.

B.6 How to write values to a file

When you need to write certain values (results) to a file you may use either the
”send” command which allows to write results in certain formats or a command
file which uses the ’echo’ system command in combination with the “valu”
command. The following list shows the general structure of such a command
file:

• Choose the relevant dataset (menu or ds command)

• Add the relevant node to a set (’qadd setname’ or ’seta setname n number’)

• Open the stack: stack on

• Place node-values on the stack: prnt se setname

• Store the node: valu nod1 pop

• Store the value: valu val1 pop

• Write to file: sys echo Node nod1 Value val1 >| file.txt

156

• Or optionally: sys printf (consult the man page for the format) >| file.txt

See also “if” and “while” and see the demo in “If and while demo” on how to
work with this commands. They are useful for automatic processing.

B.7 How to generate a user dataset

It is possible to calculate and store new results with the cgx command lan-
guage. The new dataset and its entities is created with the command ”ds”.
The data are written with the ”node” command to the new dataset. The
”valu” command is used for calculations and data handling. The example
”Data storage in a user dataset” determines the normal direction on all nodes
on the free surface of the mesh and stores this information in a new dataset.
See also the sections ”How to write values to a file”, ”How to process results”.

B.8 How to generate a time-history plot

So called time history plots can be created based on a previous displayed se-
quence of data-sets (see ”Toggle Dataset Sequence”) with the command ”graph”.
It is also possible to use only the command line. For example:

• ds 1 e 3

• ds 1 2 10

• graph set t

will produce a time history plot for the nodes stored in set over all loadcases
from 1 to 10 for the entity nr 3. Or

• graph set t DISP D1

will display the displacement in direction 1 for all loadcases. For more details
and other options look into the ”graph” command description.

157

Figure 12: example of a time-history plot

B.9 How the mesh is related to the geometry

Very often you need the embedded nodes, element-faces or elements of geometric
entities to apply boundary conditions. If you understand the underlying concept
you will be able to get them more easily.

Geometric entities are the mothers of nodes, faces and elements (so to say)
and will remember them. In turn if an entity is not the mother of a given mesh-
entity it will not remember it. Therefore a body will only know about nodes
which are not placed on surfaces, lines or points. A surface will only know about
nodes which are not placed on lines or points. And so on.

Therefore if you need the nodes on a surface and not only the ones just inside

158

the surface, then create a set with this surface and do a ”comp set do”. This
will add the lines and points together with their nodes to the set.

On the other hand if you have only a node and you need the geometric entity
in which the node is embedded you might also type ”comp set do”.

B.10 How to change the order of elements

Use the command ”mids” to change from second order to first order or vice versa.
In this case the amount of elements will not change. Or use the command ”send”
with the parameter “quadlin” to change from second order to first order. But
in this case each second order element will be splitted in 8 first order elements.

B.11 How to connect independent meshes

Sometimes it is advisable to ”glue” independent meshes together instead of
trying to create one big seamless-mesh. Or you just want to create a contact
formulation were you know that no separation will happen. In this situations you
might use equations (also called mpc’s) which connect one dependent node with
one or more independent nodes. The independent side should be coarser than
the dependent side to avoid gaps in the connection. See the command ”send in
combination with the option ”areampc” how to create such connections. Sliding
and fixed contact as well as press-fits can be modelled. The necessary sets should
be defined based on geometry not on the mesh. In this case the definition will
be stored with the ”save” or ”exit” command and can be used after the next
program call. If no sets for the connections are at hand you may use the ”neigh”
command to generate them.

Background: The movement of each location in an element (or on its surface)
is fully described by the movement of its associated nodes and its shape-function.
In an iterative algorithm element-coordinates are varied until the real-world
coordinates of a dependent node are matched. Based on the element coordinates
the shape function gives the participation (weight) factors of the independent
nodes (the coefficients in the mpc’s). This approach delivers valid results as
long as the dependent node is not located outside of the independent element.
Therefore the location of the dependent node has to be modified in such cases.
The dependent will be moved to the surface of the independent element (again
decribed by its shape-function) and the procedure is repeated.

B.12 How to define loads and constraints

Loads and constraints are not saved in any database. They are just created
and written to a file with the ”send” command. But the sets which are needed
for the definition are stored together with the geometry if you type the ”save”
command. Of course the sets must have been defined based on geometry and
not based on mesh entities like nodes because mesh-entities are not saved with
the ”save” command. You must know that geometry-sets know also their mesh
entities after a ”mesh” command. If you store your commands to write the

159

Figure 13: Dependent node on element face to create a connection

boundary conditions in a file you can easily repeat them by just reading this
command-file (see ”read”). Several types of loads can be applied. That is
forces, pressure, thermal-heat-coefficients and radiation etc. For unsupported
loads write a set of element-, node- or face-labels (parameter ”names”) and apply
the desired load to that set in the solver input-file. Other boundary conditions
like single-point-constraints for structural, thermal and fluid-calculations can be
written. The sliding condition (parameter ”slide”) were nodes are bound to the
element-faces to which they belong can be used for structural calculations or
for fluid calculations. In the later case it forces the flow to follow the surface
of the elements. This is necessary in inviscid calculations to prevent the fluid
to penetrate the walls. Results from a previous calculation can be written in
the solver input format for further calculations (parameter ”ds”, ”tmf” etc.).
For example temperatures for thermal mechanic fatigue analysis or velocities,
pressures and thermals for a restart of a cfd calculation.

B.13 How to map loads

Values at nodes can be mapped (interpolated) from a second mesh with the
”map” command (2D and 3D). This second mesh (data source or “master”)
is usually available as a result-file from a previous calculation. The ”read”
command with the “add” parameter can be used to include this file in the

160

current model. Solver-input files (inp) and result files (frd) can be used as a
data source. The command will add an offset to the nodes and elements so
that existing nodes and elements will not be overwritten. The original mesh is
the target or “slave” of the mapping process. The mapping process will add
the interpolated (mapped) values to the dataset(s) which originated from the
master mesh. The mapped values can be visualized by selecting the mapped
dataset and entity and then by plotting the slave elements or faces with “plot
fv slave”. An example of the necessary commands for the mapping process
(surfaces to surfaces) is listed below:

REMARK: Be aware that you have to create sets of nodes and

faces for surface mapping! They will be called ’master’

and ’slave’

Open the target mesh with cgx.

Define a set with the slave nodes or faces to which values

should be mapped (for example pressure):

qadd slave t10 (here with a tolerance of 10 deg)

comp slave do (to extend the set by the referenced faces or

nodes)

Then open a set and read the model with the values (pressure):

seto source

read result.frd add

setc

If necessary move ’source’ in space to match the position of the

’slave’ (see ‘‘move’’).

Add the faces to the ’source’ set

(now only nodes and elements are already stored in ’source’):

comp source do

plot f source

Define the master set:

qadd master t10 (catch the right faces showing the values)

comp master do

Map the values of dataset 1 with:

map slave master surf ds1

Check the mapping with:

ds 1 e 1

plot fv slave

Write the file with the mapped values:

161

send slave abq pres ds1 e1

Check the file ‘‘slave_ds1e1.dlo’’ with an editor and use it

in an inp-file.

If the master values are not available in either inp or frd format but in any other
format which can be read by cgx (isaac, openFoam ..) you may write them in
frd format with the ”send” command to be usable as a master.

B.14 How to run cgx in batch mode

Most commands can be executed in batch-mode. Actually if you read a file with
geometry (fbd-file) then you run cgx in batch mode already! You just have to
add ”exit” or ”quit” at the end of the file and it will be obvious. You might use
the ”read” command in such a command-file to reference other command-files
or to read files with mesh-entities for whatever purposes. In such a way you
can create and modify geometry or meshes in batch-mode or evaluate results
in batch-mode. But you need a graphic-capable computer because cgx needs it
even if no graphic output is requested. Nevertheless the pop up of the graphic
window can be suppressed by starting cgx with the “-bg” parameter. In this
mode the performance is higher since no graphic related actions are performed.
Even during foreground operation the user has the possibillity to execute com-
mands in the background mode when he switches this mode on with “asgn bg
on”. Especially when reading commands from a file it increases the execution
time significantly. After reading it has to be switched of with “asgn bg off”.

Some commands only make sense in a batch file like “if” and “while”. Please
have a look into “If and while demo” on how to work with this commands.
Results can be extracted and stored to a file, see “How to write values to a file”.

Be aware of the ’examples’ directory. It holds examples on how to use the
command language as a programming language. The ’ifwhiledemo’ generates
points in a loop and shows how to write cgx generated values to a file. The
’userDataset’ shows how to generate a user dataset for a temperature field based
on the z coordinate of the nodes.

Regard the “stop” command to stop file execution and the “cont” command
to re-start reading. This is very helpfull during creation of such a batch file.

It should be noted that a successive ’save’ or ’exit’ command will overwrite
the batch file if it has the file-extension ’fbd’. To prevent this the user should
use a different extension like ’fbl’ instead of ’fbd’.

When executing commands which increase the used space then it might hap-
pen that geometry is clipped and can not be seen or accessed anymore. In such
a case a “frame” command is needed. This command is usually automatically
triggered. Especially in batch mode without graphic output it solves sometimes
strange situations.

When the command “init” or “wsize” is used then they have to be used in
the very first line. Otherwhise the window dimensions take only effect after the
batch file was completely parsed and executed.

162

B.15 How to process results

The node results can be modified or used to generate derived results. There are
basically three levels of operations.

The easiest one is to just multiply with a factor, add a number or use an
exponent to all node results of a certain dataset with the ”ds” command.

The next level is using variables which can be used to do calculations based
on results and can be written back to an existing dataset or a new one. This
requires a good knowledge of the way cgx works and of the necessary commands
(”if”, ”while”, ”stack”, ”valu”, ”enq”, ”prnt”, ”ds”, ”sys” etc.). In this way data
can be written to a file with the “sys” command (depending on the operation
system using echo or printf) were an external program might be invoked by the
“sys” command which in turn could provide data for cgx.

Finally, complex operations can be coded in C in the file userFunction.c.
The user function is activated by the ”call” command. A new compilation of
cgx is required unless a dynamically linked library is used.

B.16 How to deal with CAD-geometry

In general hexahedra-elements perform better than tets but if the mesh should
be derived from a cad-geometry it is often more convenient to create a tetrahedra
mesh as to modify or rebuild the geometry to make it meshable with hexahedra-
elements. The following section gives some hints which alternatives are available:

• The CAD format is supported by a stand alone translator (see the calculix
home pages). In this case the user can mesh the surfaces with structured-
[14] (elty setname tr3 etc.) or unstructured triangles [15] (elty setname
tr3u etc.). The user might modify this surface mesh until he is happy with
it. The surface mesh can then be filled with tets created by an external
auto-mesher called from within cgx (mesh setname tet). The cgx uses the
tet-mesher from NETGEN [4] or TETGEN [5] for this task. The command
”asgn” is used to switch between them.

Therefore cgx can only generate a tet-mesh if one of these programs are
accessible (TETGEN like glut is included in the cgx package). For the
full functionality replace the original ng vol source file in the NETGEN
package with the modified program ng vol from the cgx-distribution and
build it again. This version regards a target element size. Tetgen is able
to regard that size unchanged.

• For CAD models in STEP- or IGES-format you may consider to use a
tet-mesher like NETGEN [4] which often generates quite nice tet-meshes
with very few user interaction. You can read this meshes with cgx and
combine them with cgx-geometry and meshes. Then create your boundary
conditions etc. You might read the native-netgen format (.vol) instead of
abaqus-format because this includes the 2D meshing regions in separate
sets which can be used to apply boundary conditions (“cgx -ng file.vol”,
see ”Program Parameters”). See “prnt” how to list the available sets.

163

• A simple step-reader is integrated in cgx (cgx -step filename). It can deal
with points and lines. This is sufficient for axis-symmetric structures like
a rotor but the experienced user might also use the following approach for
more complex geometries: You start with a file containing a 2D-section,
subdivide it in mesh-able surfaces and sweep it in the 3rd dimension to
create your geometry (see swep). If features exist in the 3rd dimension
then this features must be included in the 2D-section. Sweep the 2D-
section to the location were the feature starts, then right to the end and
at last to the end of the geometry. Delete the unwanted bodies before
and after the feature. You might project the sweped sections to a target
surface if the feature is shaped in the 3rd dimension (see proj).

Sometimes the geometry consists of several (maybe even identical) parts
which are arranged on different positions in space. This is called assembly.
When cgx is started with the parameter “-stepsplit” instead of “-step”
it will write the single parts to separate directories using their original
coordinate systems. The user can prepare meshable geometry or meshes
based on them. But he must use the filenames which he finds there. The
final meshed assembly can be build afterwards by calling the fbl-file which
was written by cgx. This fbl-file contains the original step-commands to
position and eventually duplicate the single geometries/meshes from the
subdirectories.

The following section describes the process to generate a tet-mesh with cgx
based on a cad model:

Figure 14: CAD-geometry meshed with tet-elements

164

• Install and use the propper interface program to convert the cad format to
fbd format (You find example data (vda,iges,step) in CalculiX/cgx x.x/examples/cad)

(ie: vda2fbd halter.vda > halter.fbd).

– Remark regarding vda2fbd: In some cases the header of the vda file
causes trouble and must be modified to make the program run.

– Remark regarding cad2fbd: The cgx can not deal with surfaces which
use the same line on two sides (a cylinder made of just one surface).
Please use the parameter -sa with cad2fbd. It splits such surfaces
in two (cad2fbd -sa cadfile). If problems occur call cad2fbd without
arguments and play along with the listed parameters.

• Start cgx with that file (cgx -a halter.fbd). Usually some warnings appear
on the screen but the program will fix that automatically (triggered by the
parameter -a). After all geometry has been read the program will merge
points and lines to close the volume (body). WARNING: If no body
exists the user has to manually merge all line end-points individually for
all parts. Otherwhise intentionally unconnected parts could be merged at
some locations. If the model consists of only one part a ’merg p all’ should
work if no geometry changes are planned. To be on the save side the user
should prefer to use the following commands to merge only line endpoints:

seta b1 l <set>

comp b1 e

merg p b1

Finally the line divisions are determined based on default values. Use
“plot lc all r 3“ to see the lines in red 3 digit whide with node spacing as
defined by the line divisions. The current default values lead to approxi-
matelly 200 elements over the length of the model. The default values are
defined in cgx.h, see GTOL NODE DIST and GTOL. You may use now
the command div in the ’auto’ mode to change the element sizes to your
needs individually in each relevant region.

• If problems occur the user might start the program with option -b instead
of -a (cgx -b halter.fbd). Then no automatic pre-processing is done and the
user has to prepare the geometry manually. This commands are executed
when starting with -a:

merge only points which are referenced by lines

seta LBUF l all

comp LBUF e

merg p LBUF

delete zero length lines

del l0 all

set the line divisions

div all auto

165

The user may use this command sequence when he reads a cad fbd file
during run time (“read cadfile.fbd”). See the commands merg, div, qdiv,
qlin, comp and rep.

• A default element type was assigned to all surfaces (tr6u) if you had started
cgx with parameter -a. You may change the element type with elty. In
most cases it is advisable to use this triangles first (tr6u) and not directly
tetraeders (te10) because a surface mesh can be interactively improved
before the tets are generated. Remark: You can assign tets only to a set
holding one or more bodies. The body related surfaces get a preliminary
triangle element type assigned as a basis for the tets. If no body exists
you may create one with “body ! all”. You assign the tet element type
with the “elty” command (elty setname te10).

• All surfaces should be shaded and filled with triangles. This has to be
done manually by typing “mesh all” (see mesh) or “rep all” which just
calculates the interior shape of the surfaces. In most cases “mesh” is
preferable since it does both at the same time. Since the surface meshing
of a CAD geometry can be very time consuming a default number of
threads is used when the model is opened in the auto mode (cgx -a file).
The actual number of threads will be listed when using the command
“prnt info”. The user might change this value with the command asgn
before he starts meshing. The default is set in cgx.h, see NTHREADS.

• Use then “plus si all” to display the shaded surfaces. If a surface points
inwards it is not illuminated and appears only dark grey. Flip the sur-
faces in a way that its normal direction points outwards. Use ”qflp” abd
press the ”a” key to swith to the “auto” mode and then select a correctly
oriented surface by pressing key ”s”, all other surfaces will immediatelly
use the same orientation (if it’s a closed volume). Add now the element
faces with ”plus f all“.

• If some surfaces could not be meshed then modify the divisions of the lines
of this surfaces (see ”qmsh”, key ’l’) and/or chose the structured element
type tr6 for this surfaces (see ”qmsh”, key ’x’). Or change the element-
size (see ”qmsh”, key ’h’ or ’t’) inside the surfaces. The command ”qmsh”
fixes parts of the surface-mesh in a convenient way since this command
combines several other ones. For convenient usage of “qmsh” display the
surfaces “plot si all“ together with faces “plus f all“ and add the lines with
“plus lc all r 3“).

Remark: In some cases surfaces are not meshable when you had combined
two surfaces before with “qmsh”. The referenced NURBS might be too
small to cover the whole new surface. Without such a related nurbs no
unstructured mesh can be created. If structured elements are no solution
you may delete the related NURBS from the surface definition with ”qsur”
using key ’b’. Then store the surface in a set and create a new NURBS
with “nurs ! setname”. The surfaces stored in the set will produce NURBS

166

based on the Coons algorithm [14]. If the surface shape matches a prim-
itive shape you may also use the ”qshp” or ”shpe” command to generate
such a shape and assign it to the surface.

• Check the mesh. If the command ”prnt info” lists ”ed:0” then no model
edges exist and the mesh is closed and ready to be used for tet meshing.
If edges exist then the surface mesh is not closed which means that not
all shells have exactly one neighbor at each edge. This free edges exist
usually at the location of lines and the problem can often be solved by
changing the divsion of the underlying lines. The edges are displayed by
default but might be hidden by other entities. To increase the size of the
representation up to 10 pixels use ”view ed 10”. This can be seen on figure
15. Then chose the line under one edge with “qmsh” and change the line
division to a higher or lower number until the edge disapears. Actually
cgx detects this edges after meshing and tries to solve the problem by
increasing the division of the related lines incrementally, but only a few
times. The remaining lines are stored in set “-EDGE” and can be displayed
as well for manual adjustments.

• Generate the tet mesh (“mesh all tet“). A target-size for the tet-elements
can be specified if “ng vol” from the cgx distribution was installed (for
example “mesh all tet 2.5“ will define a maximum element-size of “2.5”).
If the model consists of several unconnected parts separate them in single
sets and mesh one after the other (see seta, qadd, qrem, comp). Check
the mesh and correct bad elements:

prnt eq all

mids -BJBY force

prnt eq all

(repeat that procedere until no elements are stored in -BJBY any more)

• Create sets of nodes, faces or elements to create boundary conditions (if
you had not created them already based on the geometry) and export
them with ”send”.

• Create the input deck for ccx with an editor and start the calculation.

• Look at the results with cgx (cgx results.frd).

Additional remarks:

• It should be mentioned that only the set which was used for tet meshing
will hold the created tet elements. The user has to use ”seto” if other
target sets are needed.

• In cases were certain regions of the model need different inner mesh den-
sities the user might use the ”split” command to subdivide the model in
disjunct bodies which can be meshed with independent density. Skilled
users might use bodies which share common surfaces. This way ’equations’
or ’contact’ can be avoided.

167

Figure 15: Visible (black) edge over lines and faces. Such edges exists if the
surface mesh is not closed and not meshable with tets. Here two elements meet
just one element at the black edge.

• If a te10 meshed body shares surfaces with a he20 meshed body equations
connecting tet related nodes which are not used by the hex elements are
generated and will be written into the mesh file together with the nodes
and elements. But this feature works only if all related bodies are meshed
together with just one ’mesh’ command. So create and use a set holding all
adjacent bodies for use with the ’mesh’ command. This feature requires in
any case a body for the tet meshed structure. Bodies which do not share
common surfaces with the tet body can be meshed in separate steps.

• For cyclic symmetric boundary conditions it is preferable to have the same
mesh on both connected surfaces. To archive this the user should not
mesh one of two sides. Instead he copies the elements of the meshed side
to the location of the un-meshed side (see ”copy”). Since the element
orientation of the target side has to be inverted it is necessary first to
change the orientation of the source side (see ”flip” option ’s’ or ”qflp”).
Then copy the elements to the target side and merge the nodes in that

168

region (usually just ”merg n all”). Then the orientation of the source side
has to be inverted again (see ”flip” option ’s’ or ”qflp”)). Now the tet
mesh can be generated.

• Surfaces will not be deleted when the user deletes lines which define com-
plete holes in existing surfaces. But it is necessary that all lines of a certain
hole are deleted at once. If only a partial hole is deleted, the surface is
deleted as well. It is proposed to use zap to delete the affected lines.

• Sometimes a surface is not meshable because a line runs right into it (a
sliver, see figure 16). The following commands can be used to remove it:

qlin (select the lines with ’a’, ’x’)

qpnt (select the line endpoint ’p’, in the figure marked with

DL2M and place it over the other endpoint ’p’)

The line(s) are now deleted. Often such a surface is only

meshable with a regular mesh (tr6), so change the type

and mesh then:

qmsh (select the surface ’s’ and change the type ’x’ and mesh

’m’)

Figure 16: CAD-surface with a sliver or scratch

169

B.17 How to check an input file for ccx

A quick check of a ccx input-file can be done with cgx by reading the file with
the option -c (cgx -c file.inp). After startup all defined node-, element-, and
surface-sets are availabe together with internal sets which group togeter certain
entities according to their purposes. The following internal sets will be created
if appropriate data were found:

• +bou(DOF): Created if *BOUNDARY is found. All affected nodes are
stored in +bou were +bou(DOF) store just the nodes which are con-
strained in the related DOF number.

• +dep(BOU): Created if *EQUATION is found. All dependent nodes are
stored in +dep.

• +ind(BOU): Analog to +dep.

• +clo[nr]: Created if *CLOAD is found. The nr counts the number of
appearance.

• +dlo[nr]: Created if *DLOAD is found.

• +mpc[nr]: Created if *MPC is found.

• +rad[nr]: Created if *MPC is found.

• +flm[nr]: Created if *FILM is found.

• +cflx[nr]: Created if *CFLUX is found.

• +dflx[nr]: Created if *DFLUX is found.

• +tie[1—2]: Created if *TIE is found. The set +tie1 stores the slave entities
and +tie2 the master. The single sets which define the contact areas are
linked together so if identified with the “qenq” command the referenced
(linked) opposing set is listed in the konsole.

• +trans...: Created if *TRANSFORM is found. The name consists of the
definition of the transformation.

• +[elty]: Created for all known element types like *C3D20.

REMARK: Internal setnames start either with a ’-’ or ’+’. The names which
start with a ’-’ are not listed with “qenq”.

Check the element quality with “Show Bad Elements” or use “eqal” to set
thresholds and “plot” or “prnt” to actually plot or list the affected elements.

Forces regard their referenced coordinate-system (*TRANSFORM). The val-
ues are automatically transformed into the global cartesian system so that the
vectors point in the correct direction.

Multiple load definitions inside one *STEP on a single entity will sum up
(ccx compatible). This applies to cflux, dflux, cload, dload.

170

B.18 Remarks Concerning Ansys

The cgx is capable to write the following mesh entities to files (see “send”, the
necessary key-parameters are listed in brackets below):

• Nodes and Elements

• Sets of nodes and elements (nam)

• Single point constraints (spc)

• Equations (areampc)

• Pressure (pres)

• Temperatures (ds, all datasets with just one entity will be written as
temperatures)

The resulting files have to be combined with the help of an editor and extended
by material-data and the necessary controll-commands.

So far results can not be read.

B.19 Remarks Concerning Code Aster

From Paul CARRICO (2005/02/12)
Brief presentation of CODE ASTER: Code Aster is an implicit solver under

GPL licence from the French company EDF (Électricité de France).
Code Aster and its documentations is downloadable at the following address:

http://www.code-aster.org

(NOTA : the documentation is in French at the moment but many users are
translating it in English and in German)

The following list is not exhaustive but it briefly presents the capabilities of
the solver:

• Mechanical modeling: Code aster allows linear and non linear calculations
in static, dynamic, acoustic etc. Many mechanical laws are implemented in
the solver such as damage, fatigue, creep, viscosities (elastic, plastic) etc.
For isotropic and non-isotropic materials (orthotropic ones for example).
Because of EDF fields, the materials used in Code Aster are essentially
Metallic ones and Geo material one, but there are probably some others.

• Thermal and thermomechanical calculations: The Thermal solver per-
forms linear and non-linear calculations for pure thermal but also for
thermomechanical simulations.

• Input interface: EFICAS is the input interface for coding the input file,
but it’s not a pre-processing as you can find in many commercial code.

171

• Tools: Many tools are provided with Code Aster: HOMARD for mesh
refinement, GIBI and GMSH for post-processing.

CGX to ASTER export format (i.e HOWTO use this export format) The
export format allows to export meshes and sets from CGX to Code Aster for
linear and quadratic 1D, 2D and 3D elements. For this, just type: ’send all
aster’ for exporting a complete mesh. The file will have the ’.mail’ extension.
Type ’send set aster nam’ for exporting the GROUP-NO (node group) and the
GROUP-MA (mesh group) which compose the set. The file will have ’.nam’
extension

The later item is particularly useful to apply boundary conditions onto
(DOF, pressure, force, displacement, temperature, etc.). Since of these bound-
ary conditions are coded with EFICAS in the input file, I thought it was not
necessary to develop another features than the 2 previous ones !

So far results can not be read.

B.20 Remarks Concerning dolfyn

Some support for dolfyn (a free cfd code) was provided by Runar Tenfjord.
In the CalculiX/cgx (nr)/examples/dolfyn directory is a patch for the dolfyn
source-code included. This patch enables dolfyn to write frd-result files which
can be visualized with cgx. There is also an example which allows cgx to be
used as an pre-processor for dolfyn. The mesh can be written in dolfyn format
with the command ”send”.

B.21 Remarks Concerning Duns and Isaac

If you intent to create a 2D-mesh for the cfd-code duns or isaac you have to
watch out that all surfaces are created in the same order. That means that
all surfaces must be defined clockwise if you look in z direction. The block-
structure can be detected only in this case. You can check the mesh by simply
mesh it with linear shell-elements and display them. All elements must be il-
luminated if looking against z. A later “qflp” or “flip” command will not cure
wrong oriented surfaces since it only changes the “sign” in their definition and
not the basic edge sequence, which is necessary here. The results of a calcu-
lation can be opened by specifying the parameter (-duns2d -duns3d -duns2dl
-duns3dl -isaac2d -isaac3d) and the filename without any extention(cgx -isaac2d
RAE2822). See also ”Program Parameters”, ”mesh”, ”send” and the airfoil-
example in the distribution. Please read the comments for duns and isaac in
the “send” command description.

Be aware that duns and isaac use block meshes which must be created us-
ing the set ’all’. So the use of set ’all’ together with the parameter ’block’ is
mandatory when the block structure is needed! Nevertheless the user might
only assign an element type to a sub set so that only a part of the geometry
will be meshed (see ”mesh”).

172

If the solver-format ”duns” is used then related numbers of surfaces (3D) or
lines (2D) will be written to file “duns.bou”. This information is necessary to
apply boundary-conditions to duns. The numbers are used in the connectivity
file “duns.conn” which will be created together with the mesh. The user has to
refer this numbers in the “duns.script2” file when assigning boundary conditions.

When using the cgx parameter ’periodic’ with the send command it is nec-
essary to deactivate the function ’CHKCUT’ in the isaac main.F file:

modifications Wittig 13. Jul 21

main.F 933 // deactivate the coord check to enable periodic boundaries

c CALL CHKCUT (IBLK1, IDIM(IBLK1,ILVL), JDIM(IBLK1,ILVL),

c 1 KDIM(IBLK1,ILVL), R(IR1),

c 2 IBLK2, IDIM(IBLK2,ILVL), JDIM(IBLK2,ILVL),

c 3 KDIM(IBLK2,ILVL), R(IR2), ICUTS(1,ICUT,ILVL),

c 4 CUTNAM(ICUT), IERRCD)

Otherwhise the performed check would stop the program.

B.22 Remarks Concerning ls-dyna

The cgx is capable to write the following mesh entities to files (see “send”, the
necessary key-parameters are listed in brackets below):

• Nodes and Elements

• The *PART command to link a setname with an element property ID

• Node- (*SET NODE LIST) and element sets (*SET SOLID)

• Surfaces (*SET SEGMENT)

The resulting files have to be combined with the help of an editor and extended
by material-data and the necessary controll-commands.

a mesh with sets (here COMP1,COMP2,SPC,SURF)

has to be available

grpa 1 COMP1 dyn

grpa 2 COMP2 dyn

send all dyn

seta SPC#1 n SPC

seta SURF#2 n SURF

send SPC#1 dyn nam

send SURF#2 dyn sur

assemble the input file:

sys echo "*KEYWORD" >| input.dyn

sys cat COMP1_group1.dyn >> input.dyn

sys cat COMP2_group2.dyn >> input.dyn

sys cat all.dyn >> input.dyn

sys cat SPC#1.nam >> input.dyn

sys cat SURF2.sur >> input.dyn

sys echo "*END" >> input.dyn

173

B.23 Remarks Concerning Nastran

The cgx is capable to write the following mesh entities to files (see “send”, the
necessary key-parameters are listed in brackets below):

• Nodes and Elements

• node displacement coordinate system (see command “csysa”)

• Single point constraints (spc)

• Equations or RBEs (areampc, to glue components. A previous command
“asgn” defines if mpcs or rbes will be created)

• RBE2 (mpc, for rbe-spiders)

• Pressure (pres, so far only CHEXA8)

• Temperatures (ds, all datasets with just one entity will be written as
temperatures)

The resulting files have to be combined with the help of an editor and extended
by material-data and the necessary controll-commands.

The f06-file with results can be read (so far only CHEXA with displacements
and stresses).

B.24 Remarks Concerning NETGEN

It is not necessary to write the mesh in abaqus format if you use netgen as a
mesher. The native netgen format (.vol) can be read by cgx (cgx -ng file.vol)
as well. The netgen mesh format (.vol) includes the surface-patches which were
defined by the edges of the model and used for the generation of the volume-
mesh. This patches can be used to define boundary conditions or loads. The
nodes and faces of this patches are stored in sets named “+set[nr]”. To get
an overview over the patches type “prnt se”. To see were the patches are lo-
cated type “plot f all” and use the “PAGE DOWN”-key to scan through all sets.

A netgen surface mesh can be written based on faces of elements. The faces of
hex, tet, quad and tria elements are triangulated and written in the stl format
which can be read by using the netgen-gui or the stand-alone netgen mesher for-
mat (file.ng). This mesher can be found in the netgen sub-directory nglib and
is named ng vol. It will create tet4 elements which use and keep the shape of
the provided tri3 elements. To improve the meshing results with the netgen-gui
the user could create own edges based on the stl triangles or read and manip-
ulate the netgen created edges with cgx and then write them back. To read
the edges: In NETGEN open the stl-doctor and go in the edges menu. There
delete all edges with ”all undefined” then load the edges with ”load edgedata”
and activate them with ”candidate to confirm”.

174

B.25 Remarks Concerning OpenFOAM

The mesh can be written in OpenFOAM polyMesh format with the command
”send”. If you work in the polyMesh-directory of the OpenFOAM case then all
mesh-related files will be already in place. So far the physical-type is not written
in the boundary file as it is not mandatory. The results of an OpenFOAM
calculation can be viewed by specifying the parameter -foam and the case (the
relative or absolute path including the directory-name of the case). See also
”Program Parameters”, ”mesh”.

B.26 Remarks Concerning Samcef

From Paul CARRICO (2006/04/17)

BASIC TUTORIAL FOR HOWTO USE THE SAMCEF EXPORT FORMAT

1- Definition of the points

K: pnt p0 0 0 0

K: pnt p1 1 0 0

K: pnt p2 0 1 0

K: pnt p3 2 1 0

K: plot pa all

2- Definition of the lines

K: plus l all

K: qlin (link the points p0 p1 p3 p2 p2 p0)

3- Creation of the first surface

K: qsur

4- Creation of l0 (between p0 &p1) and l1 (between p1 &p3) sets

K : qadd lo

K : qadd l1

4- Creation of the 2 other surfaces

K : swep l0 l1 tra 0 -3 0

K : swep l1 l1b tra -3 0 0

5- Creation of the SYMETRY set

K : plot s all

K : qadd SYMETRY (use both a and rr keys to select all the

surfaces)

6- Creation of the volumes

K : swep SYMETRY s1 swep tra 0 0 1 (all the volume will be

automatically created)

175

7- Looking for common points, lines and surfaces

In the order :

K : merg p all

K : merg l all

K : merg s all

8- Creation of the LOAD set and ANCHORAG one

K : qadd LOAD (use rr keys to select the surface)

K : qadd ANCHORAG (use rr keys to select the surface)

NOTA : It’s easy to verify the different sets ; for example :

K : plot b all (you can see all the volumes)

K : plus s LOAD (you can see the set LOAD)

K : plus s ANCHORAG

K : plus s SYMETRY

9 - Mesh

K : plot ld all

K : div all mult 2

K : elty all HE20 (to specify HEXAHEDRA with 20 nodes)

K : elty LOAD qu8 (to mesh the set LOAD otherwise no quads will

be created)

K : elty ANCHORAG qu8

K : elty SYMETRY

K : mesh all (to mesh the part with all.dat name)

K : send all sam (to export the mesh into Samcef format)

K : send LOAD sam nam (to export groups into Samcef format)

K : send ANCHORAG sam nam (see previous remark)

K : send SYMETRY sam nam

10- Modifications

It’s possible now to make some modifications :

a- open all.dat file with your favorite text editor (Vi for me)

b- open ANCHORAG.nam & the SYMETRIC.nam files and do the same as

previously

c- concatenate under Linux the files using the following schema :

cat all.dat LOAD.nam > s1.m

cat s1.m ANCHORAG.nam > s2.m

cat s2.m SYMETRY.nam > part.dat

(all the sx.m files will be erased afterward)

d- open PART.dat file and go to the end => then add RETURN

e- the mesh file now works with Samcef

Another interesting way : add for each .nam file an input in your

bank file:

176

input ’’part.dat’’

input ’’LOAD.nam’’

input ’’ANCHORAG.nam’’

etc. ...

11 IMPORTANT REMARK

After, it’s possible to modify the mesh into BACON (extrusions,

etc. ...);

that’s why the element hypothesis is not added at the end of the

file ;

=> you must define the element definition AFTER the last mesh

modification (.HYP MINDLIN)

12- Comments

if you’ve any remark or any comment or any suggestion to improve

this export format, please send a mail to paul.carrico_at_free.fr

So far results can not be read.

C Simple Examples

The following listings show simple geometry input-files. The pictures show this
geometry together with their labels and the generated mesh. The models were
made based on three points. Two points defined one axis of rotation and one
was the basis of several ”swep” and ”merg” operations. In case of the sphere
the surfaces on the pole had to be redefined using only three lines per surface.

C.1 Disc

PNT py -0.00000 1.00000 0.00000

PNT p0 -0.00000 -0.00000 0.00000

PNT P001 0.70711 -0.00000 -0.70711

PNT P003 -0.00000 -0.00000 -1.00000

PNT P005 -0.70711 -0.00000 -0.70711

PNT P006 -1.00000 -0.00000 0.00000

PNT P009 -0.70711 -0.00000 0.70711

PNT P00A 0.00000 -0.00000 1.00000

PNT P00G 0.70711 -0.00000 0.70711

PNT P00I 1.00000 -0.00000 -0.00000

LINE L001 P00I P001 p0 4

LINE L002 P001 P003 p0 4

LINE L003 P003 p0 8

LINE L004 p0 P00I 8

177

Figure 17: disc made of four 90 degree segments

LINE L005 P003 P005 p0 4

LINE L006 P005 P006 p0 4

LINE L007 P006 p0 8

LINE L009 P006 P009 p0 4

LINE L00A P009 P00A p0 4

LINE L00C P00A p0 8

LINE L00G P00A P00G p0 4

LINE L00I P00G P00I p0 4

GSUR A001 + BLEND - L003 - L002 - L001 - L004

GSUR A002 + BLEND - L007 - L006 - L005 + L003

GSUR A003 + BLEND - L00C - L00A - L009 + L007

GSUR A004 + BLEND + L004 - L00I - L00G + L00C

ELTY all QU4

C.2 Cylinder

PNT p0 -0.00000 -0.00000 0.00000

178

Figure 18: cylinder made of four 90 degree segments

PNT py -0.00000 1.00000 0.00000

PNT p1 1.00000 -0.00000 0.00000

PNT P001 1.00000 1.00000 0.00000

PNT P002 -0.00000 -0.00000 -1.00000

PNT P003 -0.00000 1.00000 -1.00000

PNT P006 -1.00000 -0.00000 0.00000

PNT P007 -1.00000 1.00000 0.00000

PNT P00A 0.00000 -0.00000 1.00000

PNT P00C 0.00000 1.00000 1.00000

LINE L001 p1 P001 2

LINE L002 P002 P003 2

LINE L003 p1 P002 p0 8

LINE L004 P001 P003 py 8

LINE L005 P006 P007 2

LINE L006 P002 P006 p0 8

LINE L007 P003 P007 py 8

LINE L008 P00A P00C 2

179

LINE L009 P006 P00A p0 8

LINE L00A P007 P00C py 8

LINE L00I P00A p1 p0 8

LINE L00J P00C P001 py 8

SHPE CYL1 cyl p0 py 1.

GSUR A001 + CYL1 - L001 + L003 + L002 - L004

GSUR A002 + CYL1 - L002 + L006 + L005 - L007

GSUR A003 + CYL1 - L005 + L009 + L008 - L00A

GSUR A004 + CYL1 - L008 + L00I + L001 - L00J

ELTY all QU4

C.3 Sphere

Figure 19: Segment of a Sphere

PNT py -0.00000 1.00000 -0.00000

PNT p1 1.00000 -0.00000 -0.00000

PNT P001 0.70711 -0.00000 -0.70711

PNT P003 -0.00000 -0.00000 -1.00000

180

PNT P006 0.70711 0.50000 -0.50000

PNT P008 -0.00000 0.70711 -0.70711

PNT P00C 0.70711 -0.00000 -0.00000

PNT P00K 0.70711 0.70711 -0.00000

PNT P00L -0.00000 -0.00000 -0.00000

PNT P00N -0.00000 1.00000 -0.00000

LINE L001 p1 P001 P00L 8

LINE L002 P001 P003 P00L 8

LINE L003 p1 P006 P00L 8

LINE L004 P006 P008 P00L 8

LINE L006 P001 P006 P00C 8

LINE L008 P003 P008 P00L 8

LINE L00A p1 P00K P00L 8

LINE L00C P00K P00N P00L 8

LINE L00G P006 P00K P00C 8

LINE L00J P008 P00N P00L 8

SHPE SPH1 sph P00L 1.

GSUR A005 + SPH1 - L003 + L001 + L006

GSUR A002 + SPH1 - L002 + L006 + L004 - L008

GSUR A006 + SPH1 + L003 + L00G - L00A

GSUR A004 + SPH1 - L004 + L00G + L00C - L00J

ELTY all QU4

C.4 Sphere (Volume)

PNT py 0.00000 1.00000 0.00000

PNT p1 1.00000 0.00000 0.00000

PNT P006 0.70711 0.50000 -0.50000

PNT P008 0.00000 0.70711 -0.70711

PNT P00C 0.70711 0.00000 0.00000

PNT P00K 0.70711 0.70711 0.00000

PNT P00L 0.00000 0.00000 0.00000

PNT P00N 0.00000 1.00000 0.00000

LINE L001 p1 P00L 8

LINE L002 P00L P008 8

LINE L003 p1 P006 P00L 8

LINE L004 P006 P008 P00L 8

LINE L005 P00L P00N 8

LINE L00A p1 P00K P00L 8

LINE L00C P00K P00N P00L 8

LINE L00G P006 P00K P00C 8

LINE L00J P008 P00N P00L 8

SHPE SPH1 sph P00L 1.

GSUR A001 + BLEND - L003 + L001 + L002 - L004

GSUR A002 + BLEND - L005 - L001 + L00A + L00C

GSUR A006 + SPH1 + L003 + L00G - L00A

181

Figure 20: Segment of a Sphere (Volume)

GSUR A004 + SPH1 - L004 + L00G + L00C - L00J

GSUR A003 + BLEND + L002 + L00J - L005

GBOD B001 NORM + A006 - A003 - A004 + A002 + A001

ELTY all HE20

C.5 Airfoil for cfd codes

All surfaces must be oriented in the same way. The sets are used to define areas
for the boundary conditions.

PNT P002 -0.24688 0.00667 0.00000

PNT P003 -0.24375 0.00903 0.00000

PNT P004 -0.23750 0.01228 0.00000

PNT P005 -0.23125 0.01450 0.00000

PNT P006 -0.22500 0.01608 0.00000

PNT P007 -0.21250 0.01798 0.00000

PNT P008 -0.20000 0.01875 0.00000

PNT P009 -0.18750 0.01900 0.00000

182

Figure 21: Airfoil for cfd codes

PNT P00A -0.17500 0.01888 0.00000

PNT P00C -0.15000 0.01785 0.00000

PNT P00E -0.12500 0.01602 0.00000

PNT P00G -0.10000 0.01368 0.00000

PNT P00I -0.07500 0.01090 0.00000

PNT P00J -0.05000 0.00770 0.00000

PNT P00K -0.02500 0.00420 0.00000

PNT P00L -0.01250 0.00230 0.00000

PNT P00O -0.25000 0.00000 0.00000

PNT P00P -0.24688 -0.00308 0.00000

PNT P00R -0.24375 -0.00427 0.00000

PNT P00S -0.23750 -0.00565 0.00000

PNT P00T -0.23125 -0.00653 0.00000

PNT P00V -0.22500 -0.00730 0.00000

PNT P00W -0.21250 -0.00875 0.00000

PNT P00X -0.20000 -0.00993 0.00000

PNT P00Z -0.18750 -0.01070 0.00000

183

PNT P010 -0.17500 -0.01115 0.00000

PNT P011 -0.15000 -0.01120 0.00000

PNT P012 -0.12500 -0.01043 0.00000

PNT P013 -0.10000 -0.00917 0.00000

PNT P014 -0.07500 -0.00750 0.00000

PNT P015 -0.05000 -0.00540 0.00000

PNT P016 -0.02500 -0.00308 0.00000

PNT P017 -0.01250 -0.00175 0.00000

PNT P019 0.00000 0.00000 0.00000

PNT P1 -0.50000 -0.50000 0.00000

PNT P2 0.50000 -0.50000 0.00000

PNT p3 0.50000 0.50000 0.00000

PNT p4 -0.50000 0.50000 0.00000

PNT P01A -0.18162 0.01898 0.00000

PNT P01B -0.18180 -0.01094 0.00000

PNT P046 -0.27025 0.01256 0.00000

PNT P059 -0.26599 0.28688 0.00000

PNT P049 -0.25144 0.02439 0.00000

PNT P05A -0.35589 0.17566 0.00000

PNT P04C -0.22636 0.03241 0.00000

PNT P04D -0.20128 0.03643 0.00000

PNT P05C -0.38027 0.00958 0.00000

PNT P04G -0.12604 0.03833 0.00000

PNT P04H -0.07588 0.03616 0.00000

PNT P04I -0.02572 0.03231 0.00000

PNT P05D -0.31932 -0.21136 0.00000

PNT P04L -0.27652 -0.00154 0.00000

PNT P04M -0.27025 -0.00803 0.00000

PNT P05F -0.20962 -0.27840 0.00000

PNT P04P -0.25373 -0.01567 0.00000

PNT P04R -0.22676 -0.02143 0.00000

PNT P04T -0.20124 -0.02394 0.00000

PNT P05G 0.01132 0.29145 0.00000

PNT P04W -0.12604 -0.02508 0.00000

PNT P04X -0.07588 -0.02519 0.00000

PNT P04Z -0.02572 -0.02355 0.00000

PNT P05H 0.00065 -0.30887 0.00000

PNT P052 -0.18074 0.03754 0.00000

PNT P054 -0.18133 -0.02465 0.00000

PNT P056 0.00118 0.02891 0.00000

PNT P058 0.00010 -0.02250 0.00000

PNT P05I 0.01244 0.50000 0.00000

PNT P05J 0.00610 -0.50000 0.00000

PNT P05L 0.50000 -0.34112 0.00000

PNT P05M 0.50000 0.29206 0.00000

PNT P05N 0.50000 0.05780 0.00000

184

PNT P05S 0.50000 -0.05314 0.00000

PNT P05V 0.50000 -0.00217 0.00000

PNT P00N -0.23448 0.01345 0.00000

PNT P02M -0.23471 -0.00608 0.00000

PNT P03B -0.24164 0.02804 0.00000

PNT P03C -0.23405 -0.02029 0.00000

PNT P03E -0.24536 0.00794 0.00000

PNT P03P -0.24464 -0.00400 0.00000

PNT pl1 -1.00000 0.00000 0.00000

PNT pl2 1.00000 0.00000 0.00000

SEQA S006 pnt P01A P00A P00C P00E P00G P00I P00J P00K P00L P019

SEQA S007 pnt P019 P017 P016 P015 P014 P013 P012 P011 P010 P01B

SEQA S00W pnt P03B P049 P046 P04L P04M P04P P03C

SEQA S00R pnt P052 P04G P04H P04I P056

SEQA S00S pnt P058 P04Z P04X P04W P054

SEQA S00T pnt P05F P05D P05C P05A P059

SEQA S001 pnt P01A P009 P008 P007 P006 P005 P00N

SEQA S00E pnt P03E P002 P00O P00P P03P

SEQA S00L pnt P052 P04D P04C P03B

SEQA S00A pnt P02M P00T P00V P00W P00X P00Z P01B

SEQA S00X pnt P03C P04R P04T P054

SEQA S002 pnt P00N P004 P003 P03E

SEQA S00P pnt P03P P00R P00S P02M

LINE L003 P01A P052 910

LINE L00C P01A P019 S006 120

LINE L00E P019 P01B S007 120

LINE L004 p4 P1 150

LINE L05F P2 P05L -204

LINE L05S P05L P05S -912

LINE L05C P1 P05J 120

LINE L006 P01B P054 910

LINE L007 P019 P056 910

LINE L008 P058 P019 -910

LINE L00G P05S P05V -210

LINE L00N P03B P03C S00W 130

LINE L03R P052 P056 S00R 120

LINE L00I P05V P05N 210

LINE L03S P058 P054 S00S 120

LINE L04V p4 P059 -204

LINE L04W P059 P052 -912

LINE L04X P054 P05F 912

LINE L04Z P05F P1 204

LINE L050 P05F P059 S00T 150

LINE L052 P059 P05G 120

LINE L054 P05F P05H 120

LINE L056 P05H P058 -912

185

LINE L058 P056 P05G 912

LINE L059 p3 P05I 130

LINE L05A P05I p4 120

LINE L05D P05J P2 130

LINE L05V P056 P05N 130

LINE L05I P05M p3 204

LINE L05L P05N P05M 912

LINE L05Z P058 P05S 130

LINE L06C P019 P05V 130

LINE L06F P05M P05G 130

LINE L06H P05G P05I 204

LINE L06I P05L P05H 130

LINE L06J P05H P05J 204

LINE L001 P01A P00N S001 -210

LINE L00A P03E P03P S00E 120

LINE L00K P052 P03B S00L 110

LINE L009 P02M P01B S00A 210

LINE L00O P03C P054 S00X 110

LINE L002 P00N P03E S002 -205

LINE L00L P03P P02M S00P 205

LINE cl pl1 pl2 120

LINE L005 P00O P019 120

LCMB C001 + L001 + L002 + L00A + L00L + L009

LCMB C004 + L00K + L00N + L00O

GSUR A001 + BLEND + L003 + C004 - L006 - C001

GSUR A002 + BLEND + L006 - L03S + L008 + L00E

GSUR A003 + BLEND + L00C + L007 - L03R - L003

GSUR A004 + BLEND - L008 + L05Z + L00G - L06C

GSUR A005 + BLEND + L06C + L00I - L05V - L007

GSUR A00I + BLEND - L04W - L050 - L04X - C004

GSUR A00J + BLEND - L04V + L004 - L04Z + L050

GSUR A00K + BLEND + L04Z + L05C - L06J - L054

GSUR A00L + BLEND + L06J + L05D + L05F + L06I

GSUR A00N + BLEND + L04V + L052 + L06H + L05A

GSUR A00O + BLEND - L06H - L06F + L05I + L059

GSUR A00P + BLEND + L04W + L03R + L058 - L052

GSUR A00R + BLEND + L04X + L054 + L056 + L03S

GSUR A00S + BLEND - L058 + L05V + L05L + L06F

GSUR A00T + BLEND - L056 - L06I + L05S - L05Z

SETA wall l L05C

SETA wall l L059

SETA wall l L05A

SETA wall l L05D

SETA profil l L00C

SETA profil l L00E

SETA profil l L001

186

SETA profil l L00A

SETA profil l L009

SETA profil l L002

SETA profil l L00L

SETA in l L004

SETA out l L05F

SETA out l L05S

SETA out l L00G

SETA out l L00I

SETA out l L05I

SETA out l L05L

C.6 If and while demo

Figure 22: Result of If and while demo

The if and while commands can be nested. A demo which produces some
points on the window follows:

text if&value&while demo

187

def the leading letter of point names

valu vp P

define the initial x value

valu vx 0.

define parameters

valu v2 4

valu v3 1

start loop:

while vx < v2

valu vy 0.

valu vz 0.

seto S1

while vy < v2

define the pnt coordinates

valu vy + vy v3

valu vy int vy

valu vx int vx

valu vz int vz

define the pnt name

valu p1 & vp vy

valu p1 & p1 vx

valu p1 & p1 vz

generate the pnt

pnt p1 vx vy vz

endwhile

setc

valu vy 0.

valu vz 1.

seto S2

while vy < v2

valu vy + vy v3

valu vy int vy

valu vx int vx

valu vz int vz

valu p2 & vp vy

valu p2 & p2 vx

valu p2 & p2 vz

pnt p2 vx vy vz

endwhile

setc

valu vx + vx v3

if vx == 1

plot pa S1 r

else

plus pa S2 b

endif

188

endwhile

send all fbd

demo on how to write the content of variables to writedemo.txt

valu vx int vx

valu vy int vy

sys echo VX: vx VY: vx VZ: vz >| writedemo.txt

C.7 Data storage in a user dataset

Example: Calculate normals of all free surfaces

and write them to a new dataset

#

switch on background mode (improves execution time)

asgn bg on

get the number of surface nodes

seta n f all

comp n do

stack on

prnt se n

stack off

valu sum_nods pop

calculate the normals

and write all face-nodes to the stack (it writes them in inverse order)

stack on

norm n

stack off

#

store the node numbers and values in array’s (nod1 to nod<sum_nods>)

val n sum_nods

while n > 0

valu cur_nod & nod n

valu cur_val1 & val1_nod n

valu cur_val2 & val2_nod n

valu cur_val3 & val3_nod n

val cur_nod pop

val cur_val1 pop

val cur_val2 pop

val cur_val3 pop

valu n - n 1

valu n int n

endwhile

#

create a new dataset

ds g NORMAL 3

#

use the ’node’ command to write data to the new dataset

189

REMARK: ’n’ has to be masked (’\’) since is is already defined as a value

val \n sum_nods

while n > 0

valu cur_nod & nod n

valu cur_val1 & val1_nod n

valu cur_val2 & val2_nod n

valu cur_val3 & val3_nod n

code for cgx_2.16 and later:

val \cur_nod cur_nod

val \cur_val1 cur_val1

val \cur_val2 cur_val2

val \cur_val3 cur_val3

optional code for cgx_2.15:

#val \cur_nod + cur_nod 0

#val \cur_val1 + cur_val1 0

#val \cur_val2 + cur_val2 0

#val \cur_val3 + cur_val3 0

valu cur_nod int cur_nod

node cur_nod v cur_val1 cur_val2 cur_val3

valu n - n 1

valu n int n

endwhile

set entity parameters

ds e nx 1 2 1

ds e ny 2 2 2

ds e nz 3 2 3

finish

ds f

switch off background mode

asgn bg off

show it

ds 1 e 4

plot fv all

view vec

C.8 User File Parser

The following file will be parsed and two new datasets will be created. The
nodes and elements must exist before execution!

Modelname: oragl

0rAg1 version: 19.7

ONLINE OUTPUT

** CONTACT ELEMENT STATES @ amplitude=1.584893e-04

el.nr stick[%] slip[%] sep[%] FN mean[N] FN min[N] FN max[N] MU

208 0.0000 0.3594 0.6406 -1.7391E-02 -9.3037E-02 0.00005 6.00E-01

190

209 0.0703 0.2734 0.6562 -8.3892E-03 -4.6994E-02 0.00E00 6.00E-01

389 1.0000 0.0000 0.0000 -1.3890E+03 -1.3890E+03 -1.38E03 6.00E-01

390 1.0000 0.0000 0.0000 -6.9448E+02 -6.9450E+02 -6.94455 6.00E-01

391 1.0000 0.0000 0.0000 -1.3890E+03 -1.3890E+03 -1.38895 6.00E-01

392 1.0000 0.0000 0.0000 -6.9448E+02 -6.9452E+02 -6.94435 6.005-01

** CONTACT ELEMENT STATES @ amplitude=2.511886e-04

el.nr stick[%] s1ip[%] sep[%] FN mean[N] FN min[N] FN max[N] MU

208 0.0000 0.3594 0.6406 -2.7563E-02 -1.4745E-01 0.00005 6.00E-01

209 0.0703 0.2734 0.6562 -1.3296E-02 -7.4481E-02 0.00005 6.00E-01

389 1.0000 0.0000 0.0000 -1.3890E+03 -1.3890E+03 -1.38895 6.00E-01

390 1.0000 0.0000 0.0000 -6.9448E+02 -6.9451E+02 -6.94445 6.00E-01

391 1.0000 0.0000 0.0000 -1.3890E+03 -1.3890E+03 -1.38895 6.00E-01

392 1.0000 0.0000 0.0000 -6.9448E+02 -6.9454E+02 -6.94415 6.00E-01

The following code asks for the filename of the above listed data and stores the
node related data in two new datasets each with seven entities.

valu string1 el.nr

valu string2 **

valu string3 CONTACT

valu file ? "provide oragl cstate filename:"

read file stack

stack on

prnt st si

stack off

valu sum_recs pop

val nn 0

while nn < sum_recs

valu nn + nn 1

valu nn int nn

valu record & L nn

val record pop

endwhile

stack free

valu nn 0

stack on

while nn < sum_recs

valu nn + nn 1

valu nn int nn

valu record & L nn

REC record

val record push

191

valu arg1 pop

valu arg2 pop

if arg2 eq string3

valu amplitude pop 4

AMP amplitude

valu amplitude push =\

valu amplitude pop 2

endif

if arg1 eq string1

found record arg1 string1

create a new dataset

ds g CSTATE 7 amplitude

valu cur_nod 0

#

while cur_nod ne string2

in while cur_nod ne string2

valu nn + nn 1

valu nn int nn

if nn >= sum_recs

break nn sum_recs

valu cur_nod string2

else

valu record & L nn

val record push

valu cur_nod pop

valu arg1 pop

valu arg2 pop

valu arg3 pop

valu arg4 pop

valu arg5 pop

valu arg6 pop

valu arg7 pop

node cur_nod v arg1 arg2 arg3 arg4 arg5 arg6 arg7

seta CNODES \n cur_nod

stack free

endif

endwhile

#

set entity parameters

ds e stick[%] 1

ds e slip[%] 2

ds e sep[%] 3

ds e FNmean 4

ds e FNmin 5

ds e FNmax 6

ds e MUE 7

192

finish

ds f

valu nn - nn 1

valu nn int nn

endif

endwhile

stack off

stack free

References

[1] OpenGL-Like Rendering Toolkit, from Brian Paul,
http://www.mesa3d.org/

[2] OpenGL Utility Toolkit (GLUT), from Mark J. Kilgard

[3] CalculiX GraphiX (cgx), from Klaus Wittig, klaus.wittig@calculix.de

[4] NETGEN, unstructured mesher from Joachim Schoberl,
https://sourceforge.net/projects/netgen-mesher/

[5] TETGEN, unstructured mesher from Hang Si, http://wias-
berlin.de/software

[6] dolfyn, Open Source CFD code, http://www.dolfyn.net

[7] Duns, a two- and three dimensional cfd code,
http://sourceforge.net/projects/duns/

[8] ISAAC, a two- and three dimensional cfd code, http://isaac-
cfd.sourceforge.net

[9] OpenFOAM, a three dimensional cfd code, http://www.opencfd.co.uk

[10] Tochnog, a free fem-code, http://tochnog.sourceforge.net/

[11] Tutorial for CalculiX, from Dr. Guido Dhondt,
http://www.dhondt.de/tutorial.html

[12] ImageMagick 5.1.0 00/01/01 Q:8 cristyg@mystic.es.dupont.com. Copy-
right: Copyright (C) 2000 ImageMagick Studio

[13] Mozilla Foundation, http://www.firefox.com

[14] S. A. Coons, ’Surfaces for computer-aided design of space forms’. Project
MAC, MIT (1964). Revised to MAC-TR-41 (1967).

[15] mesh2d, unstructured 2D-mesher from B. Kaan Karamete, Ph.D, No URL
Available

[16] Paul Dierckx, Curve and Surface Fitting with Splines, Oxford. University
Press, 1993

193

	Introduction
	Concept
	File Formats
	Getting Started
	Program Parameters
	Input Devices
	Mouse
	Keyboard

	Menu
	Datasets
	Entity

	Viewing
	Show Elements With Light
	Show Bad Elements
	Fill
	Lines
	Dots
	Flip shell elements
	Toggle Culling Back/Front
	Toggle Illuminate Backface
	Toggle Model Edges
	Toggle Element Edges
	Toggle Surfaces/Volumes
	Toggle Move-Z/Zoom
	Toggle Background Color
	Toggle Vector-Plot
	Toggle Add-Displacement
	Toggle Shaded Result
	Toggle Transparency
	Toggle Ruler
	Colormap

	Animate
	Start
	Tune-Value
	Steps per Period
	Time per Period
	Toggle Real Displacements
	Toggle Static Model Edges
	Toggle Static Element Edges
	Toggle Dataset Sequence

	Frame
	Zoom
	Center
	Enquire
	Cut
	Graph
	User
	Orientation
	+x View
	-x View
	+y View
	-y View
	+z View
	-z View

	Hardcopy
	Tga-Hardcopy
	Ps-Hardcopy
	Gif-Hardcopy
	Png-Hardcopy
	Start Recording Gif-Movie

	Help
	Toggle CommandLine
	Quit

	Customization
	Commands
	anim
	area
	asgn
	aver
	bia
	body
	break
	call
	capt
	cmap
	cntr
	col
	comp
	cont
	copy
	corrad
	csysa
	cut
	del
	dist
	div
	ds
	elem
	else
	else if
	elty
	endif
	endwhile
	enq
	eprop
	eqal
	exit
	fil
	flip
	flpc
	font
	frame
	gbod
	gonly
	graph
	grpa
	grps
	gsur
	gtol
	hcpy
	help
	if
	int
	init
	lcmb
	length
	line
	lnor
	mata
	map
	mats
	max
	maxc
	maxr
	menu
	merg
	mesh
	mids
	min
	minc
	minr
	minus
	mm
	move
	movi
	msg
	mshp
	neigh
	node
	norm
	nurl
	nurs
	ori
	plot
	plus
	pnt
	prnt
	proj
	qadd
	qali
	qbia
	qbod
	qcnt
	qcut
	qdel
	qdis
	qdiv
	qenq
	qfil
	qflp
	qint
	qlin
	qmov
	qmsh
	qnor
	qpnt
	qnod
	qrem
	qseq
	qshp
	qspl
	qsur
	qtxt
	quit
	read
	rep
	rnam
	rot
	save
	scal
	send
	seqa
	seqc
	seql
	seta
	setc
	sete
	seti
	setl
	seto
	setr
	shpe
	split
	stack
	steps
	stop
	subm
	surf
	swep
	sys
	test
	thrs
	tra
	trfm
	txt
	typs
	ucut
	ulin
	val
	valu
	view
	volu
	while
	wpos
	wsize
	zap
	zoom

	Element Types
	Result Format
	Model Header Record
	User Header Record
	Nodal Point Coordinate Block
	Element Definition Block
	Parameter Header Record
	Nodal Results Block

	Pre-defined Calculations
	Von Mises Equivalent Stress
	Signed Von Mises Equivalent Stress
	Von Mises Equivalent Strain
	Signed Von Mises Equivalent Strain
	Principal Stresses
	Principal Strains
	maxShear Stresses
	Contact Stresses
	Contact Strain
	Cylindrical Stresses
	Weighted Error

	Meshing rules
	User-Functions
	Known Problems
	Program does not show the geometry after startup
	Program is not responding
	Program generates a segmentation fault

	Tips and Hints
	How to change the format of the movie file
	How to get the sets from a geo- or ccx-inp file for post-processing
	How to define a set of entities
	How to enquire node numbers and values at certain locations
	How to select only nodes on the surface
	How to write values to a file
	How to generate a user dataset
	How to generate a time-history plot
	How the mesh is related to the geometry
	How to change the order of elements
	How to connect independent meshes
	How to define loads and constraints
	How to map loads
	How to run cgx in batch mode
	How to process results
	How to deal with CAD-geometry
	How to check an input file for ccx
	Remarks Concerning Ansys
	Remarks Concerning Code Aster
	Remarks Concerning dolfyn
	Remarks Concerning Duns and Isaac
	Remarks Concerning ls-dyna
	Remarks Concerning Nastran
	Remarks Concerning NETGEN
	Remarks Concerning OpenFOAM
	Remarks Concerning Samcef

	Simple Examples
	Disc
	Cylinder
	Sphere
	Sphere (Volume)
	Airfoil for cfd codes
	If and while demo
	Data storage in a user dataset
	User File Parser

